login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342933
a(n) = n! * Sum_{k=1..n} k^2/floor(n/k).
0
1, 9, 80, 654, 6264, 59760, 665160, 7565040, 96929280, 1286046720, 18976083840, 286363123200, 4775047200000, 81792956044800, 1515077749785600, 28898470215014400, 594066352700620800, 12467555729620992000, 280797084422959104000, 6460327992512249856000, 157769680941941612544000
OFFSET
1,2
COMMENTS
In general, for m>=0, Sum_{k=1..n} k^m / floor(n/k) ~ n^(m+1) * (-1 + Sum_{j=2..m+2} zeta(j) / (m+1)).
FORMULA
a(n) ~ c * n^3 * n!, where c = Sum_{j>=1} (1 + 3*j*(j+1)) / (3*j^4*(j+1)^3) = (zeta(4) + zeta(3) + zeta(2))/3 - 1 = Pi^2/18 + Pi^4/270 + zeta(3)/3 - 1.
MATHEMATICA
Table[n!*Sum[k^2/Floor[n/k], {k, 1, n}], {n, 1, 25}]
Table[n!*Sum[(Floor[n/j]*(1 + Floor[n/j])*(1 + 2*Floor[n/j]) - Floor[n/(1 + j)]*(1 + Floor[n/(1 + j)])*(1 + 2*Floor[n/(1 + j)]))/6/j, {j, 1, n}], {n, 1, 25}]
CROSSREFS
Sequence in context: A293916 A293731 A254833 * A275497 A171314 A370039
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 23 2021
STATUS
approved