login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345683
a(n) = n! * Sum_{k=1..n} 1/floor(n/k).
7
1, 3, 14, 66, 444, 2880, 25080, 216720, 2247840, 24071040, 304335360, 3752179200, 54965433600, 810550540800, 13176376012800, 219079045785600, 4078723532083200, 75227891042304000, 1550619342784512000, 31871016307113984000, 710529031487987712000, 16180987966182014976000
OFFSET
1,2
FORMULA
a(n) ~ c * n * n!, where c = Sum_{j>=1} 1/(j^2*(j+1)) = Pi^2/6 - 1 = 0.644934... [proved by Harry Richman, see Mathoverflow link]
E.g.f.: -(1/(1-x)) * Sum_{k>0} (1 - x^k) * log(1 - x^k). - Seiichi Manyama, Jul 23 2022
MATHEMATICA
Table[n! * Sum[1/Floor[n/k], {k, 1, n}], {n, 1, 25}]
Table[n!*(Sum[(Floor[n/j] - Floor[n/(j + 1)])/j, {j, 1, n}]), {n, 1, 25}]
PROG
(PARI) a(n) = n!*sum(k=1, n, 1/(n\k)); \\ Michel Marcus, Jun 24 2021
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, (1-x^k)*log(1-x^k))/(1-x))) \\ Seiichi Manyama, Jul 23 2022
(Python)
from math import factorial, isqrt
def A345683(n): return (m:=factorial(n))*(n-1)+m//n+sum((q:=n//k)*(m//k-m//(k-1))+m//q for k in range(2, isqrt(n)+1)) # Chai Wah Wu, Oct 27 2023
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 23 2021
STATUS
approved