login
A092143
Cumulative product of all divisors of 1..n.
15
1, 2, 6, 48, 240, 8640, 60480, 3870720, 104509440, 10450944000, 114960384000, 198651543552000, 2582470066176000, 506164132970496000, 113886929918361600000, 116620216236402278400000, 1982543676018838732800000, 11562194718541867489689600000, 219681699652295482304102400000
OFFSET
1,2
COMMENTS
Let p be a prime and let ordp(n,p) denote the exponent of the largest power of p which divides n. For example, ordp(48,2)=4 since 48 = 3*(2^4). Let b(n) = A006218(n) = Sum_{k=1..n} floor(n/k). The prime factorization of a(n) appears to be given by the following conjectural formula: ordp(a(n),p) = b(floor(n/p)) + b(floor(n/p^2)) + b(floor(n/p^3)) + ... . Compare with the comments in A129365. - Peter Bala, Apr 15 2007
LINKS
Angelo B. Mingarelli, Abstract factorials, arXiv:0705.4299 [math.NT], 2007-2012.
FORMULA
a(n) = Product_{k=1..n} {floor(n/k)}!. This formula is due to Sebastian Martin Ruiz. - Peter Bala, Apr 15 2007; Formula corrected by R. J. Mathar, May 06 2008
Sum_{n>=1} 1/a(n) = A117871. - Amiram Eldar, Nov 17 2020
log(a(n)) ~ n * log(n)^2 / 2. - Vaclav Kotesovec, Jun 20 2021
a(n) = Product_{k=1..n} k^floor(n/k). - Vaclav Kotesovec, Jun 24 2021
From Ridouane Oudra, Oct 31 2024: (Start)
a(n) = Product_{k=1..n} A007955(k).
a(n) = Product_{k=1..n} k^(tau(k)/2).
a(n) = sqrt(A175493(n)). (End)
EXAMPLE
a(6) = 1*2*3*2*4*5*2*3*6 = 8640.
MAPLE
seq(sqrt(mul(k^numtheory[tau](k), k=1..n)), n=1..40); # Ridouane Oudra, Oct 31 2024
MATHEMATICA
Reap[For[n = k = 1, k <= 25, k++, Do[n = n*d, {d, Divisors[k]}]; Sow[n]]][[2, 1]] (* Jean-François Alcover, Oct 30 2012 *)
Table[Product[k^Floor[n/k], {k, 1, n}], {n, 1, 25}] (* Vaclav Kotesovec, Jun 24 2021 *)
FoldList[Times, Times @@@ Divisors[Range[25]]] (* Paolo Xausa, Nov 06 2024 *)
PROG
(PARI) my(z=1); for(i=1, 25, fordiv(i, j, z*=j); print1(z, ", "))
(Magma) [(&*[j^Floor(n/j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Feb 05 2024
(SageMath) [product(j^(n//j) for j in range(1, n+1)) for n in range(1, 31)] # G. C. Greubel, Feb 05 2024
KEYWORD
nonn
AUTHOR
Jon Perry, Mar 31 2004
STATUS
approved