The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092143 Cumulative product of all divisors of 1..n. 13
 1, 2, 6, 48, 240, 8640, 60480, 3870720, 104509440, 10450944000, 114960384000, 198651543552000, 2582470066176000, 506164132970496000, 113886929918361600000, 116620216236402278400000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Let p be a prime and let ordp(n,p) denote the exponent of the largest power of p which divides n. For example, ordp(48,2)=4 since 48=3*(2^4). Let b(n)=A006218(n)=sum_{k=1..n} floor(n/k). The prime factorization of a(n) appears to be given by the following conjectural formula: ordp(a(n),p)= b(floor(n/p))+ b(floor(n/p^2))+ b(floor(n/p^3))+ . . .. Compare with the comments in A129365. - Peter Bala, Apr 15 2007 LINKS Angelo B. Mingarelli, Abstract factorials, arXiv:0705.4299 [math.NT], 2007-2012. FORMULA a(n) = Product_{k=1..n} {floor(n/k)}!. This formula is due to Sebastian Martin Ruiz. - Peter Bala, Apr 15 2007; Formula corrected by R. J. Mathar, May 06 2008 Sum_{n>=1} 1/a(n) = A117871. - Amiram Eldar, Nov 17 2020 log(a(n)) ~ n * log(n)^2 / 2. - Vaclav Kotesovec, Jun 20 2021 a(n) = Product_{k=1..n} k^floor(n/k). - Vaclav Kotesovec, Jun 24 2021 EXAMPLE a(6) = 1*2*3*2*4*5*2*3*6 = 8640. MATHEMATICA Reap[For[n = k = 1, k <= 16, k++, Do[n = n*d, {d, Divisors[k]}]; Sow[n]]][[2, 1]] (* Jean-François Alcover, Oct 30 2012 *) Table[Product[k^Floor[n/k], {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jun 24 2021 *) PROG (PARI) z=1; for(i=1, 20, fordiv(i, j, z*=j); print1(", "z)) CROSSREFS Cf. A010786, A117871, A129364, A129365, A129439, A345466. Sequence in context: A052688 A052657 A230714 * A281027 A271961 A239836 Adjacent sequences:  A092140 A092141 A092142 * A092144 A092145 A092146 KEYWORD nonn AUTHOR Jon Perry, Mar 31 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 23:39 EDT 2021. Contains 346294 sequences. (Running on oeis4.)