login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092145
Numerator of I(n) = 2*(Integral_{x=0..1/2} (1+x^2)^n dx).
1
1, 13, 283, 8667, 342969, 16671885, 962672355, 64467073755, 4917699360945, 421377918441165, 40104072098340075, 4200511400073848475, 480454695780380469225, 59617988532820945752525, 7980059238850231812954675, 1146519564522299271411982875
OFFSET
0,2
COMMENTS
The denominator is A034910(n+1) = 2^(n-1)*(2*n+2)!/(n+1)!.
The terms in the sequence are numerators of unreduced fractions. They equal the value of the integral multiplied by b(n). The reduced fractions are 1, 13/12, 283/240, 2889/2240, 114323/80640, 1111459/709632, 21392719/12300288 etc. - R. J. Mathar, Nov 24 2008
LINKS
FORMULA
a(n) = (2^(3*n+1)*Gamma(n+3/2)/sqrt(Pi))*Hypergeometric2F1([-n, 1/2], [3/2], -1/4). - Gerry Martens, Aug 09 2015
a(n) = Sum_{k=0..n} binomial(n,k)/(4^k*(2*k+1)). - G. C. Greubel, Feb 05 2024
a(n) ~ 2^(n + 1/2) * 5^(n+1) * n^n / exp(n). - Vaclav Kotesovec, Feb 05 2024
EXAMPLE
I(3) = 8667/6720.
MAPLE
f:= n -> simplify(hypergeom([1/2, -n], [3/2], -1/4)*(2*n+2)!*2^(n-1)/(n+1)!):
map(f, [$0..20]); # Robert Israel, Nov 07 2016
MATHEMATICA
a[n_]:= (2^(1+3*n)*Gamma[3/2+n]*Hypergeometric2F1[-n, 1/2, 3/2, -1/4] )/Sqrt[Pi];
Table[a[n], {n, 0, 20}] (* Gerry Martens, Aug 09 2015 *)
PROG
(Magma) [Numerator(&+[Binomial(n, k)/(4^k*(2*k+1)): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 05 2024
(SageMath) [numerator(sum(binomial(n, k)/(4^k*(2*k+1)) for k in range(n+1))) for n in range(31)] # G. C. Greubel, Feb 05 2024
CROSSREFS
Cf. A034910.
Sequence in context: A012570 A256044 A160294 * A278628 A035017 A064750
KEYWORD
nonn,frac
AUTHOR
Al Hakanson (hawkuu(AT)excite.com), Mar 31 2004
EXTENSIONS
More terms from Alois P. Heinz, Aug 09 2015
STATUS
approved