login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256044
6th row of array in A099390.
2
1, 13, 281, 6728, 167089, 4213133, 106912793, 2720246633, 69289288909, 1765722581057, 45005025662792, 1147185247901449, 29242880940226381, 745439797095329713, 19002353776441540177, 484398978524471931341, 12348080425980866090537, 314771823879840325570888
OFFSET
0,2
LINKS
FORMULA
G.f.: -(x^6 - 27*x^5 + 177*x^4 - 328*x^3 + 177*x^2 - 27*x + 1) / ((x - 1)*(x^3 - 26*x^2 + 13*x - 1)*(x^3 - 13*x^2 + 26*x - 1)). - Alois P. Heinz, Mar 16 2015
a(n) = 40*a(n-1) - 416*a(n-2) + 1224*a(n-3) - 1224*a(n-4) + 416*a(n-5) - 40*a(n-6) + a(n-7). - Vincenzo Librandi, Aug 20 2018
MATHEMATICA
a[n_] := Product[2(2+Cos[2j Pi/7]+Cos[2k Pi/(2n+1)]), {k, 1, n}, {j, 1, 3}] // Round;
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 20 2018 *)
LinearRecurrence[{40, -416, 1224, -1224, 416, -40, 1}, {1, 13, 281, 6728, 167089, 4213133, 106912793}, 20] (* Vincenzo Librandi, Aug 20 2018 *)
PROG
(PARI) x='x+O('x^100); Vec(-(x^6-27*x^5+177*x^4-328*x^3+177*x^2-27*x+1)/((x-1)*(x^3-26*x^2+13*x-1)*(x^3-13*x^2+26*x-1))) \\ Altug Alkan, Mar 23 2016
(Magma) I:=[1, 13, 281, 6728, 167089, 4213133, 106912793]; [n le 7 select I[n] else 40*Self(n-1)-416*Self(n-2)+1224*Self(n-3)-1224*Self(n-4)+416*Self(n-5)-40*Self(n-6)+Self(n-7): n in [1..30]]; // Vincenzo Librandi, Aug 20 2018
CROSSREFS
Cf. A099390.
Bisection (even part) of A028468 and 6th row of A187596. - Alois P. Heinz, Mar 16 2015
Sequence in context: A320336 A133284 A012570 * A160294 A092145 A278628
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 14 2015
EXTENSIONS
a(8)-a(17) from Alois P. Heinz, Mar 16 2015
STATUS
approved