login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052688
Expansion of e.g.f. x/((1-x)*(1-x^3)).
1
0, 1, 2, 6, 48, 240, 1440, 15120, 120960, 1088640, 14515200, 159667200, 1916006400, 31135104000, 435891456000, 6538371840000, 125536739328000, 2134124568576000, 38414242234368000, 851515702861824000
OFFSET
0,3
LINKS
FORMULA
Recurrence: a(0)=0, a(1)=1, a(2)=2, (n+2)*a(n+3) = (n+3)*a(n+2) + (n+2)*(n+3)*a(n+1) + (n+1)*(n+2)*(n+3)^2*a(n).
a(n) = (n!/3)*(n + 1 - (1/3)*Sum_{alpha=RootOf(Z^2 + Z + 1)} (1 + 2*alpha)*_alpha^(-1-n)).
a(n) = n!*A002264(n+2). - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Prod(Z, Sequence(Z), Sequence(Prod(Z, Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
G(x):=x/(1-x)/(1-x^3): f[0]:=G(x): for n from 1 to 19 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..19); # Zerinvary Lajos, Apr 03 2009
MATHEMATICA
With[{nn=20}, CoefficientList[Series[x/((1-x)(1-x^3)), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Dec 24 2018 *)
Table[n!*Floor[(n+2)/3], {n, 0, 40}] (* G. C. Greubel, Jun 02 2022 *)
PROG
(SageMath) [factorial(n)*((n+2)//3) for n in (0..40)] # G. C. Greubel, Jun 02 2022
CROSSREFS
Sequence in context: A098710 A337907 A052614 * A052657 A230714 A092143
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved