login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052691
Expansion of e.g.f. (1-x)/(1-2*x+x^2-x^3).
1
1, 1, 2, 12, 96, 840, 8640, 105840, 1491840, 23587200, 413683200, 7983360000, 168129561600, 3835844812800, 94239732787200, 2480658276096000, 69651967537152000, 2077925954936832000, 65637135231123456000
OFFSET
0,3
LINKS
FORMULA
E.g.f.: (1-x)/(1-2*x+x^2-x^3).
Recurrence: a(0)=1, a(1)=1, a(2)=2, a(n) = 2*n*a(n-1) - n*(n-1)*a(n-2) + n*(n-1)*(n-2)*a(n-3).
a(n) = (n!/23)*Sum_{alpha=RootOf(-1+2*Z-Z^2+Z^3)} (1 + 6*alpha + 3*alpha^2)*_alpha^(-1-n).
a(n) = n!*A005251(n+1). - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Union(Z, Prod(Z, Z, Z, Sequence(Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1-x)/(1-2x+x^2-x^3), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, May 09 2018 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( (1-x)/(1-2*x+x^2-x^3) ))); // G. C. Greubel, Jun 02 2022
(SageMath) [factorial(n)*sum(binomial(n-j, 2*j) for j in (0..n//3)) for n in (0..40)] # G. C. Greubel, Jun 02 2022
CROSSREFS
Sequence in context: A239837 A239838 A306258 * A371040 A292419 A322543
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved