login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052692
Expansion of e.g.f. (1-x^4)/(1-x-x^4).
1
1, 1, 2, 6, 24, 240, 2160, 20160, 201600, 2540160, 36288000, 558835200, 9101030400, 161902540800, 3138418483200, 65383718400000, 1443672502272000, 33790305669120000, 838710955450368000
OFFSET
0,3
LINKS
FORMULA
E.g.f.: (1-x^4)/(1-x-x^4).
Recurrence: a(0)=1, a(1)=1, a(2)=2, a(3)=6, a(4)=24, a(n) = n*a(n-1) + n*(n-1)*(n-2)*(n-3)*a(n-4).
a(n) = (n!/283)*Sum_{alpha=RootOf(-1 +z +Z^4)} (36 - 9*alpha + 64*alpha^2 + 48*alpha^3)*alpha^(-1-n).
a(n) = n!*A003269(n), n>0. - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Prod(Z, Sequence(Prod(Z, Z, Z, Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
b[n_]:= b[n]= If[n<4, 1-Boole[n==0], b[n-1]+b[n-4]]; (* b = A003269 *)
a[n_]:= n!*b[n] +Boole[n==0];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 01 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( (1-x^4)/(1-x-x^4) ))); // G. C. Greubel, Jun 01 2022
(SageMath)
@CachedFunction
def A003269(n):
if (n<4): return 1-bool(n==0)
else: return A003269(n-1) + A003269(n-4)
def A052692(n): return factorial(n)*A003269(n) +bool(n==0)
[A052692(n) for n in (0..40)] # G. C. Greubel, Jun 01 2022
CROSSREFS
Sequence in context: A346121 A052597 A052632 * A052723 A114778 A292751
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved