login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. (1-x^4)/(1-x-x^4).
1

%I #19 Jun 08 2022 03:27:31

%S 1,1,2,6,24,240,2160,20160,201600,2540160,36288000,558835200,

%T 9101030400,161902540800,3138418483200,65383718400000,

%U 1443672502272000,33790305669120000,838710955450368000

%N Expansion of e.g.f. (1-x^4)/(1-x-x^4).

%H G. C. Greubel, <a href="/A052692/b052692.txt">Table of n, a(n) for n = 0..375</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=640">Encyclopedia of Combinatorial Structures 640</a>

%F E.g.f.: (1-x^4)/(1-x-x^4).

%F Recurrence: a(0)=1, a(1)=1, a(2)=2, a(3)=6, a(4)=24, a(n) = n*a(n-1) + n*(n-1)*(n-2)*(n-3)*a(n-4).

%F a(n) = (n!/283)*Sum_{alpha=RootOf(-1 +z +Z^4)} (36 - 9*alpha + 64*alpha^2 + 48*alpha^3)*alpha^(-1-n).

%F a(n) = n!*A003269(n), n>0. - _R. J. Mathar_, Nov 27 2011

%p spec := [S,{S=Sequence(Prod(Z,Sequence(Prod(Z,Z,Z,Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t b[n_]:= b[n]= If[n<4, 1-Boole[n==0], b[n-1]+b[n-4]]; (* b = A003269 *)

%t a[n_]:= n!*b[n] +Boole[n==0];

%t Table[a[n], {n, 0, 30}] (* _G. C. Greubel_, Jun 01 2022 *)

%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( (1-x^4)/(1-x-x^4) ))); // _G. C. Greubel_, Jun 01 2022

%o (SageMath)

%o @CachedFunction

%o def A003269(n):

%o if (n<4): return 1-bool(n==0)

%o else: return A003269(n-1) + A003269(n-4)

%o def A052692(n): return factorial(n)*A003269(n) +bool(n==0)

%o [A052692(n) for n in (0..40)] # _G. C. Greubel_, Jun 01 2022

%Y Cf. A000142, A003269.

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000