login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052694
Expansion of e.g.f. (1 + x^3 - 2*x^4)/(1-2*x).
1
1, 2, 8, 54, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, 1961990553600, 51011754393600, 1428329123020800, 42849873690624000, 1371195958099968000, 46620662575398912000
OFFSET
0,2
LINKS
FORMULA
E.g.f.: (1 + x^3 - 2*x^4)/(1-2*x).
D-finite Recurrence: a(0)=1, a(1)=2, a(2)=8, a(3)=54, a(4)=384, a(n) = 2*n*a(n-1).
a(n) = 2^n*n! + 6*[n=3].
G.f.: 6*x^3 + Hypergeometric2F0([1,1], [], 2*x). - G. C. Greubel, Jun 01 2022
MAPLE
spec := [S, {S=Union(Sequence(Union(Z, Z)), Prod(Z, Z, Z))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1+x^3-2x^4)/(1-2x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 12 2014 *)
PROG
(Magma) [n eq 3 select 54 else 2^n*Factorial(n): n in [0..30]]; // G. C. Greubel, Jun 01 2022
(SageMath) [2^n*factorial(n) + 6*bool(n==3) for n in (0..30)] # G. C. Greubel, Jun 01 2022
CROSSREFS
Sequence in context: A197931 A296788 A079503 * A069729 A346647 A354690
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved