OFFSET
0,4
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..430
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 646
FORMULA
E.g.f.: 1/(1 - x^3 - x^4).
D-finite recurrence: a(0)=1, a(1)=0, a(2)=0, a(3)=6, a(n+4) = (24 + 26*n + 9*n^2 + n^3)*a(n+1) + (24 + 50*n + 35*n^2 + 10*n^3 + n^4)*a(n).
a(n) = (n!/283) * Sum_{alpha=RootOf(-1 + Z^3 + Z^4)} (- 16 - 73*alpha + 3*alpha^2 + 12*alpha^3)*alpha^(-1-n).
a(n) = n!*A017817(n). - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Prod(Z, Z, Union(Z, Prod(Z, Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/(1-x^3-x^4), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Mar 06 2016 *)
PROG
(Magma) [Factorial(n)*(&+[Binomial(k, n-3*k): k in [0..Floor(n/3)]]): n in [0..30]]; // G. C. Greubel, May 31 2022
(SageMath) [factorial(n)*sum(binomial(k, n-3*k) for k in (0..n//3)) for n in (0..30)] # G. C. Greubel, May 31 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved