login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052697
Expansion of e.g.f. 1/(1-x^3-x^4).
1
1, 0, 0, 6, 24, 0, 720, 10080, 40320, 362880, 10886400, 119750400, 958003200, 24908083200, 523069747200, 6538371840000, 125536739328000, 3556874280960000, 70426110763008000, 1338096104497152000
OFFSET
0,4
LINKS
FORMULA
E.g.f.: 1/(1 - x^3 - x^4).
D-finite recurrence: a(0)=1, a(1)=0, a(2)=0, a(3)=6, a(n+4) = (24 + 26*n + 9*n^2 + n^3)*a(n+1) + (24 + 50*n + 35*n^2 + 10*n^3 + n^4)*a(n).
a(n) = (n!/283) * Sum_{alpha=RootOf(-1 + Z^3 + Z^4)} (- 16 - 73*alpha + 3*alpha^2 + 12*alpha^3)*alpha^(-1-n).
a(n) = n!*A017817(n). - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Prod(Z, Z, Union(Z, Prod(Z, Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/(1-x^3-x^4), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Mar 06 2016 *)
PROG
(Magma) [Factorial(n)*(&+[Binomial(k, n-3*k): k in [0..Floor(n/3)]]): n in [0..30]]; // G. C. Greubel, May 31 2022
(SageMath) [factorial(n)*sum(binomial(k, n-3*k) for k in (0..n//3)) for n in (0..30)] # G. C. Greubel, May 31 2022
CROSSREFS
Sequence in context: A293590 A376513 A194770 * A376518 A376493 A376477
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved