login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052696 Expansion of e.g.f. (1-x)^2/(1-4*x+3*x^2-x^3). 1
1, 2, 12, 114, 1440, 22680, 428400, 9439920, 237726720, 6735052800, 212012640000, 7341338188800, 277317497318400, 11348577278438400, 500138456661043200, 23615780481925632000, 1189441481702842368000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..375

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 645

FORMULA

E.g.f.: (1 - x)^2/(1 - 4*x + 3*x^2 - x^3).

D-finite recurrence: a(0)=1, a(1)=2, a(2)=12, a(n) = 2*n*a(n-1) - 3*n*(n-1)*a(n-2) + n*(n-1)*(n-2)*a(n-3).

a(n) = n! * Sum_{alpha=RootOf(-1 +4*Z -3*Z^2 +Z^3)} (1/31)*(4 + 7*alpha - 2*alpha^2)*alpha^(-1-n).

a(n) = n! * A052544(n). - G. C. Greubel, May 31 2022

MAPLE

spec := [S, {S=Sequence(Union(Z, Prod(Z, Sequence(Z), Sequence(Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);

MATHEMATICA

With[{nn=20}, CoefficientList[Series[(1-x)^2/(1-4x+3x^2-x^3), {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Aug 28 2012 *)

PROG

(Magma) R<x>:=PowerSeriesRing(Rationals(), 30);

Coefficients(R!(Laplace( (1-x)^2/(1-4*x+3*x^2-x^3) ))); // G. C. Greubel, May 31 2022

(SageMath)

@CachedFunction

def b(n): # b = A052544

    if (n<3): return factorial(n+1)

    else: return 4*b(n-1) - 3*b(n-2) + b(n-3)

def A052696(n): return factorial(n)*b(n)

[A052696(n) for n in (0..40)] # G. C. Greubel, May 31 2022

CROSSREFS

Cf. A052544.

Sequence in context: A091854 A141141 A128571 * A107723 A258175 A225797

Adjacent sequences:  A052693 A052694 A052695 * A052697 A052698 A052699

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 4 12:21 EDT 2022. Contains 355075 sequences. (Running on oeis4.)