login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258175 Sum over all Dyck paths of semilength n of products over all peaks p of x_p+y_p, where x_p and y_p are the coordinates of peak p. 10
1, 2, 12, 114, 1448, 22770, 424164, 9095450, 220023184, 5914998594, 174682531260, 5614908340866, 194967208057272, 7267467723747218, 289270983756577620, 12239218862861690250, 548301077168477951520, 25918121712918957399426, 1288797080051656060595820 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..350

Wikipedia, Lattice path

MAPLE

b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,

      `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x+y, 1) +

                   b(x-1, y+1, true)  ))

    end:

a:= n-> b(2*n, 0, false):

seq(a(n), n=0..20);

MATHEMATICA

b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x + y, 1] + b[x - 1, y + 1, True]]];

a[n_] := b[2*n, 0, False];

Table[a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Apr 23 2016, translated from Maple *)

CROSSREFS

Cf. A000108, A000698, A005411, A005412, A258172, A258173, A258174, A258176, A258177, A258178, A258179, A258180, A258181.

Sequence in context: A128571 A052696 A107723 * A225797 A302286 A035051

Adjacent sequences:  A258172 A258173 A258174 * A258176 A258177 A258178

KEYWORD

nonn

AUTHOR

Alois P. Heinz, May 22 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 2 19:18 EST 2021. Contains 341756 sequences. (Running on oeis4.)