login
A225797
The number of idempotents in the partition monoid on [1..n].
5
2, 12, 114, 1512, 25826, 541254, 13479500, 389855014, 12870896154, 478623817564, 19835696733562, 908279560428462, 45625913238986060, 2499342642591607902, 148545280714724993650, 9537237096314268691724
OFFSET
1,1
COMMENTS
The partition monoid is the set of partitions on [1..2n] and multiplication as defined in Halverson and Ram.
No general formula is known for the number of idempotents in the partition monoid.
a(2) to a(8) were first produced using the Semigroups package for GAP, which contains code based on earlier calculations by Max Neunhoeffer.
LINKS
I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014.
T. Halverson, A. Ram, Partition algebras, European J. Combin. 26 (6) (2005) 869-921.
J. D. Mitchell et al., Semigroups package for GAP.
PROG
(GAP) for i in [2 .. 8] do
Print(NrIdempotents(PartitionMonoid(i)), "\n");
od;
CROSSREFS
Cf. A227545.
Sequence in context: A107723 A258175 A365575 * A302286 A035051 A214222
KEYWORD
nonn
AUTHOR
James Mitchell, Jul 27 2013
EXTENSIONS
a(9)-a(12) from James East, Feb 07 2014
a(13) onwards from James Mitchell, May 23 2016
STATUS
approved