The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302286 a(n) = [x^n] 1/(1 - n*x - x/(1 - n*x - x/(1 - n*x - x/(1 - n*x - x/(1 - ...))))), a continued fraction. 1
 1, 2, 12, 116, 1530, 25422, 507696, 11814728, 313426350, 9324499610, 307171539576, 11091813369276, 435408606414964, 18453269887229478, 839464708754178240, 40786587211854543120, 2107367668847505288726, 115352793604678609311282, 6667002839420189781109800, 405656528458830256952396420 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(n) = [x^n] (1 - n*x - sqrt(1 - (2*n + 4)*x + n^2*x^2))/(2*x). a(0) = 1; a(n) = (1/n)*Sum_{k=0..n} (n + 1)^k*binomial(n,k)*binomial(n,k-1). a(n) = A247507(n,n). a(n) ~ exp(2*sqrt(n)) * n^(n - 3/4) / (2*sqrt(Pi)). - Vaclav Kotesovec, Jun 08 2019 MATHEMATICA Table[SeriesCoefficient[1/(1 - n x + ContinuedFractionK[-x, 1 - n x, {k, 1, n}]), {x, 0, n}], {n, 0, 19}] Table[SeriesCoefficient[(1 - n x - Sqrt[1 - (2 n + 4) x + n^2 x^2])/(2 x), {x, 0, n}], {n, 0, 19}] Join[{1}, Table[(1/n) Sum[(n + 1)^k Binomial[n, k] Binomial[n, k - 1], {k, 0, n}], {n, 1, 19}]] Table[(n + 1) Hypergeometric2F1[1 - n, -n, 2, n + 1], {n, 0, 19}] CROSSREFS Main diagonal of A247507. Cf. A006318, A099169, A247496, A292798. Sequence in context: A107723 A258175 A225797 * A035051 A214222 A227459 Adjacent sequences:  A302283 A302284 A302285 * A302287 A302288 A302289 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Apr 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 12:45 EDT 2021. Contains 343037 sequences. (Running on oeis4.)