|
|
A292798
|
|
a(n) = [x^n] 1/(1 - x - n*x/(1 - x - n*x/(1 - x - n*x/(1 - x - n*x/(1 - x - n*x/(1 - ...)))))), a continued fraction.
|
|
4
|
|
|
1, 2, 15, 244, 6345, 229326, 10663471, 607693640, 41058670113, 3210853971610, 285387481699551, 28423216247375676, 3136023698489382025, 379743303818657805222, 50074394496591697023135, 7143088376895580682492176, 1096075604718147681983312001, 180030794404631168482202007090
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ exp(1/2) * 2^(2*n) * n^(n-3/2) / sqrt(Pi). - Vaclav Kotesovec, Sep 24 2017
a(n) = (1/(n+1)) * [x^n] (1+x)^(n+1) / (1 - n*x)^(n+1). - Paul D. Hanna, May 07 2018
|
|
MATHEMATICA
|
Table[SeriesCoefficient[1/(1 - x + ContinuedFractionK[-n x, 1 - x, {i, 1, n}]), {x, 0, n}], {n, 0, 17}]
Table[SeriesCoefficient[(1 - x + Sqrt[1 - 2 (2 n + 1) x + x^2])/(1 - 2 (n + 1) x + x^2 - (x - 1) Sqrt[1 - 2 (2 n + 1) x + x^2]), {x, 0, n}], {n, 0, 17}]
Table[Hypergeometric2F1[-n, n + 1, 2, -n], {n, 0, 17}]
|
|
PROG
|
(PARI) {a(n) = polcoeff( (1+x)^(n+1) / (1 - n*x +x*O(x^n) )^(n+1), n) / (n+1)}
|
|
CROSSREFS
|
Main diagonal of A103209 (with offset 0).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|