OFFSET
1,3
COMMENTS
The columns are the row sums of the inverses of the Riordan arrays ((1-d*x)/(1-x),x(1-d*x)/(1-x)), that is, of the Riordan arrays ((1+x-sqrt(1+2(1-2*d)x+x^2)/(2*d*x),(1+x-sqrt(1+2(1-2*d)x+x^2)/(2*d)). - Paul Barry, May 24 2005
LINKS
E. Ackerman, G. Barequet, R. Y. Pinter and D. Romik, The number of guillotine partitions in d dimensions, Inf. Proc. Lett 98 (4) (2006) 162-167.
Andrei Asinowski and Toufik Mansour, Separable d-Permutations and Guillotine Partitions, arXiv 0803.3414 [math.CO], 2008; Annals of Combinatorics 14 (1) pp.17-43 Springer, 2010; Abstract
Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.
Jean Cardinal, Stefan Felsner, Topological drawings of complete bipartite graphs, Journal of Computational Geometry 9.1 (2018), 213-246. Also arXiv:1608.08324 [cs.CG], 2016 (The OEIS is referenced in version v1 but not in v2).
FORMULA
T(n, d) = (1/n) * sum[i=0..n-1, C(n, i)*C(n, i+1)*(d-1)^i*d^(n-i) ], T(n, 0)=1.
G.f. of d-th column: [1-z-(z^2-4dz+2z+1)^(1/2)]/(2dz-2z).
T(n, k) = sum{j=0..n, C(n+j, 2j)*k^j*C(j)}, C(n) as in A000108. - Paul Barry, May 21 2005
T(n, k) = hypergeom([-n, n+1], [2], -k). - Peter Luschny, May 23 2014
EXAMPLE
1,...1,....1,.....1,......1,......1,.......1,.......1,.......1,
1,...2,....3,.....4,......5,......6,.......7,.......8,.......9,
1,...6,...15,....28,.....45,.....66,......91,.....120,.....153,
1,..22,...93,...244,....505,....906,....1477,....2248,....3249,
1,..90,..645,..2380,...6345,..13926,...26845,...47160,...77265,
1,.394,.4791,.24868,..85405,.229326,..522739,.1059976,.1968633,
1,1806,37275,272188,1204245,3956106,10663471,24958200,52546473,
MAPLE
T := (n, k) -> hypergeom([-n, n+1], [2], -k);
seq(print(seq(simplify(T(n, k)), k=0..9)), n=0..6); # Peter Luschny, May 23 2014
MATHEMATICA
T[0, _] = T[_, 0] = 1;
T[n_, k_] := Sum[Binomial[n+j, 2j] k^j CatalanNumber[j], {j, 0, n}];
Table[T[n-k+1, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018, after Paul Barry *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Jan 27 2005
STATUS
approved