

A163269


T(n,k) = largest coefficient in the expansion of (1+...+x^(n1)) ^ (2*k)


1



1, 1, 2, 1, 6, 3, 1, 20, 19, 4, 1, 70, 141, 44, 5, 1, 252, 1107, 580, 85, 6, 1, 924, 8953, 8092, 1751, 146, 7, 1, 3432, 73789, 116304, 38165, 4332, 231, 8, 1, 12870, 616227, 1703636, 856945, 135954, 9331, 344, 9, 1, 48620, 5196627, 25288120, 19611175, 4395456
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

T(n,k) = number of ways the sums of all components of two 1..n kvectors can be equal
T(n,k) is an odd polynomial in n of order 2*k1
examples:
T(n,1) = n
T(n,2) = (2/3)*n^3 + (1/3)*n
T(n,3) = (11/20)*n^5 + (1/4)*n^3 + (1/5)*n
T(n,4) = (151/315)*n^7 + (2/9)*n^5 + (7/45)*n^3 + (1/7)*n
Table starts:
1 1 1 1 1
2 6 20 70 252
3 19 141 1107 8953
4 44 580 8092 116304
5 85 1751 38165 856945


LINKS

R. H. Hardin, Table of n, a(n) for n=1..3240


CROSSREFS

Sequence in context: A128741 A175757 A060539 * A103905 A270967 A103209
Adjacent sequences: A163266 A163267 A163268 * A163270 A163271 A163272


KEYWORD

nonn,tabl


AUTHOR

R. H. Hardin Jul 24 2009


STATUS

approved



