login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103905 Square array T(n,k) read by antidiagonals: number of tilings of an <n,k,n> hexagon. 12
1, 1, 2, 1, 6, 3, 1, 20, 20, 4, 1, 70, 175, 50, 5, 1, 252, 1764, 980, 105, 6, 1, 924, 19404, 24696, 4116, 196, 7, 1, 3432, 226512, 731808, 232848, 14112, 336, 8, 1, 12870, 2760615, 24293412, 16818516, 1646568, 41580, 540, 9, 1, 48620, 34763300 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
As a square array, T(n,k) = number of all k-watermelons without a wall of length n. - Steven Finch, Mar 30 2008
LINKS
P. J. Forrester and A. Gamburd, Counting formulas associated with some random matrix averages, arXiv:math/0503002 [math.CO], 2005.
A. J. Guttmann, A. L. Owczarek and X. G. Viennot, Vicious walkers and Young tableaux. I. Without walls, J. Phys. A 31 (1998) 8123-8135.
H. Helfgott and I. M. Gessel, Enumeration of tilings of diamonds and hexagons with defects, arXiv:math/9810143 [math.CO], 1998.
C. Krattenthaler, Advanced Determinant Calculus: A Complement, Linear Algebra Appl. 411 (2005), 68-166; arXiv:math/0503507 [math.CO], 2005.
P. A. MacMahon, Combinatory Analysis, vol. 2, Cambridge University Press, 1916; reprinted by Chelsea, New York, 1960.
FORMULA
T(n, k) = [V(2n+k-1)V(k-1)V(n-1)^2]/[V(2n-1)V(n+k-1)^2], with V(n) the superfactorial numbers (A000178).
T(n, k) = Prod[j=0..k-1, j!(j+2n)!/(j+n)!^2 ].
T(n, k) = Prod[h=1..n, Prod[i=1..k, Prod[j=1..n, (h+i+j-1)/(h+i+j-2) ]]].
T(n, k) = Prod[i=1..k, Prod[j=n+1..2n+1, i+j]/Prod[j=0..n, i+j]]; - Paul Barry, Jun 13 2006
Conjectural formula as a sum of squares of Vandermonde determinants: T(n,k) = 1/((1!*2! ... *(n-1)!)^2*n!)* sum {1 <= x_1, ..., x_n <= k} (det V(x_1, ...,x_n))^2, where V(x_1, ...,x_n} is the Vandermonde matrix of order n. Compare with A133112. - Peter Bala, Sep 18 2007
For k >= 1, T(n,k)=det(binomial(2*n,n+i-j))1<=i,j<=k [Krattenhaller, Theorem 4].
Let H(n) = product {k = 1..n-1} k!. Then for a,b,c nonnegative integers (H(a)*H(b)*H(c)*H(a+b+c))/(H(a+b)*H(b+c)*H(c+a)) is an integer [MacMahon, Section 4.29 with x -> 1]. Setting a = b = n and c = k gives the entries for this table. - Peter Bala, Dec 22 2011
EXAMPLE
Array begins:
1, 2, 3, 4, 5, 6, ...
1, 6, 20, 50, 105, 196, ...
1, 20, 175, 980, 4116, 14112, ...
1, 70, 1764, 24696, 232848, 1646568, ...
1, 252, 19404, 731808, 16818516, 267227532, ...
...
MATHEMATICA
t[n_, k_] := Product[j!*(j + 2*n)!/(j + n)!^2, {j, 0, k - 1}]; Join[{1}, Flatten[ Table[ t[n - k , k], {n, 1, 10}, {k, 1, n}]]] (* Jean-François Alcover, May 16 2012, from 2nd formula *)
CROSSREFS
Rows include A002415, A047819, A047835, A047831.
Columns include A000984 and A000891.
Main diagonal is A008793.
Sequence in context: A175757 A060539 A163269 * A270967 A103209 A089900
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Feb 22 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:26 EST 2023. Contains 367503 sequences. (Running on oeis4.)