OFFSET
0,2
COMMENTS
Number of tilings of a <4,n,4> hexagon.
Partial sums of A133708. - Peter Bala, Sep 21 2007
REFERENCES
O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241. [Annotated scanned copy]
Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 25.
FORMULA
a(n) = C(n,n-1)*C(n+1,n-2)*C(n+2,n-3)*C(n+3,n-4)/(10*4!), n >= 4 . - Zerinvary Lajos, May 29 2007
a(n-4) = (1/3456)*Sum_{1 <= x_1, x_2, x_3, x_4 <= n} (det V(x_1,x_2,x_3,x_4))^2 = (1/3456)*Sum_{1 <= i,j,k,l <= n} ((i-j)(i-k)(i-l)(j-k)(j-l)(k-l))^2, where V(x_1,x_2,x_3,x_4) is the Vandermonde matrix of order 4. - Peter Bala, Sep 21 2007
Empirical g.f.: (x+1)*(x^8 + 52*x^7 + 658*x^6 + 2890*x^5 + 4810*x^4 + 2890*x^3 + 658*x^2 + 52*x + 1)/(1-x)^17. - Colin Barker, Jun 06 2012
Sum_{n>=0} 1/a(n) = 67200*Pi^4 + 5605600*Pi^2 - 185612833/3. - Amiram Eldar, May 29 2022
MAPLE
seq(binomial(n, n-1)*binomial(n+1, n-2)*binomial(n+2, n-3)*binomial(n+3, n-4)/(10*4!), n=4..24); # Zerinvary Lajos, May 29 2007
MATHEMATICA
Table[Product[Times@@((i+Range[4, 7])/(i+Range[0, 3])), {i, n}], {n, 0, 20}] (* Harvey P. Dale, Nov 03 2011 *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
STATUS
approved