login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047835
a(n) = Product_{i=1..n} ((i+4)*(i+5)*(i+6)*(i+7))/(i*(i+1)*(i+2)*(i+3)).
4
1, 70, 1764, 24696, 232848, 1646568, 9343620, 44537922, 184225041, 677352676, 2254684432, 6892441920, 19571505408, 52101067968, 131018862096, 313203587004, 715536058545, 1569305708586, 3316911815140, 6778924352200, 13435361082000
OFFSET
0,2
COMMENTS
Number of tilings of a <4,n,4> hexagon.
Partial sums of A133708. - Peter Bala, Sep 21 2007
REFERENCES
O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241.
LINKS
O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241. [Annotated scanned copy]
Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 25.
FORMULA
a(n) = C(n,n-1)*C(n+1,n-2)*C(n+2,n-3)*C(n+3,n-4)/(10*4!), n >= 4 . - Zerinvary Lajos, May 29 2007
a(n-4) = (1/3456)*Sum_{1 <= x_1, x_2, x_3, x_4 <= n} (det V(x_1,x_2,x_3,x_4))^2 = (1/3456)*Sum_{1 <= i,j,k,l <= n} ((i-j)(i-k)(i-l)(j-k)(j-l)(k-l))^2, where V(x_1,x_2,x_3,x_4) is the Vandermonde matrix of order 4. - Peter Bala, Sep 21 2007
Empirical g.f.: (x+1)*(x^8 + 52*x^7 + 658*x^6 + 2890*x^5 + 4810*x^4 + 2890*x^3 + 658*x^2 + 52*x + 1)/(1-x)^17. - Colin Barker, Jun 06 2012
Sum_{n>=0} 1/a(n) = 67200*Pi^4 + 5605600*Pi^2 - 185612833/3. - Amiram Eldar, May 29 2022
MAPLE
seq(binomial(n, n-1)*binomial(n+1, n-2)*binomial(n+2, n-3)*binomial(n+3, n-4)/(10*4!), n=4..24); # Zerinvary Lajos, May 29 2007
MATHEMATICA
Table[Product[Times@@((i+Range[4, 7])/(i+Range[0, 3])), {i, n}], {n, 0, 20}] (* Harvey P. Dale, Nov 03 2011 *)
CROSSREFS
Fourth row of array A103905.
Sequence in context: A107421 A076430 A006296 * A133312 A333967 A093757
KEYWORD
nonn,changed
STATUS
approved