login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107421
a(n) = C(n+6,6)*C(n+9,9).
1
1, 70, 1540, 18480, 150150, 924924, 4624620, 19631040, 73002930, 243343100, 739763024, 2078672960, 5456516520, 13495999440, 31674284400, 70950397056, 152432493675, 315413948850, 630827897700, 1223211990000, 2305754601150, 4235059471500, 7595106655500
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
FORMULA
G.f.: (84*x^6+756*x^5+1890*x^4+1680*x^3+540*x^2+54*x+1)/(x-1)^16. - Harvey P. Dale, Jan 30 2013
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 11583*Pi^2 - 4481289621/39200.
Sum_{n>=0} (-1)^n/a(n) = 73728*log(2)/35 - 225*Pi^2/2 - 13673259/39200. (End)
EXAMPLE
If n=0 then C(0+6,6)*C(0+9,9) = C(6,6)*C(9,9) = 1*1 = 1.
If n=7 then C(7+6,6)*C(7+9,9) = C(13,6)*C(16,9) = 1716*11440 = 19631040.
MATHEMATICA
Table[Binomial[n+6, 6]Binomial[n+9, 9], {n, 0, 30}] (* Harvey P. Dale, Jan 30 2013 *)
PROG
(PARI) for(n=0, 29, print1(binomial(n+6, 6)*binomial(n+9, 9), ", "))
CROSSREFS
Cf. A062145.
Sequence in context: A331351 A298973 A278548 * A076430 A006296 A047835
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, May 26 2005
EXTENSIONS
Corrected and extended by Rick L. Shepherd, May 27 2005
STATUS
approved