login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107422
a(n) = binomial(n+7,7) * binomial(n+10,10).
1
1, 88, 2376, 34320, 330330, 2378376, 13741728, 66745536, 281582730, 1056804320, 3593134688, 11224833984, 32583198648, 88687996320, 228054847680, 557467405440, 1302209017395, 2919831983640, 6308278977000, 13175740578000, 26680874670450, 52514737446600
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (18,-153,816,-3060,8568,-18564,31824,-43758,48620,-43758,31824,-18564,8568,-3060,816,-153,18,-1).
FORMULA
From Chai Wah Wu, Apr 10 2021: (Start)
a(n) = 18*a(n-1) - 153*a(n-2) + 816*a(n-3) - 3060*a(n-4) + 8568*a(n-5) - 18564*a(n-6) + 31824*a(n-7) - 43758*a(n-8) + 48620*a(n-9) - 43758*a(n-10) + 31824*a(n-11) - 18564*a(n-12) + 8568*a(n-13) - 3060*a(n-14) + 816*a(n-15) - 153*a(n-16) + 18*a(n-17) - a(n-18) for n > 17.
G.f.: (120*x^7 + 1470*x^6 + 5292*x^5 + 7350*x^4 + 4200*x^3 + 945*x^2 + 70*x + 1)/(x - 1)^18. (End)
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 175175*Pi^2/3 - 1493773847/2592.
Sum_{n>=0} (-1)^n/a(n) = 875*Pi^2/6 + 90112*log(2)/9 - 760090799/90720. (End)
EXAMPLE
If n=0 then C(0+7,7)*C(0+10,10) = C(7,7)*C(10,10) = 1*1 = 1.
If n=4 then C(4+7,7)*C(4+10,10) = C(11,7)*C(14,10) = 330*1001 = 330330.
MATHEMATICA
a[n_] := Binomial[n + 7, 7] * Binomial[n + 10, 10]; Array[a, 25, 0] (* Amiram Eldar, Sep 01 2022 *)
PROG
(PARI) a(n)={binomial(n+7, 7) * binomial(n+10, 10)} \\ Andrew Howroyd, Nov 08 2019
CROSSREFS
Cf. A062145.
Sequence in context: A228810 A245954 A248047 * A210006 A194491 A093288
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, May 26 2005
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Nov 08 2019
STATUS
approved