OFFSET
0,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (18,-153,816,-3060,8568,-18564,31824,-43758,48620,-43758,31824,-18564,8568,-3060,816,-153,18,-1).
FORMULA
From Chai Wah Wu, Apr 10 2021: (Start)
a(n) = 18*a(n-1) - 153*a(n-2) + 816*a(n-3) - 3060*a(n-4) + 8568*a(n-5) - 18564*a(n-6) + 31824*a(n-7) - 43758*a(n-8) + 48620*a(n-9) - 43758*a(n-10) + 31824*a(n-11) - 18564*a(n-12) + 8568*a(n-13) - 3060*a(n-14) + 816*a(n-15) - 153*a(n-16) + 18*a(n-17) - a(n-18) for n > 17.
G.f.: (120*x^7 + 1470*x^6 + 5292*x^5 + 7350*x^4 + 4200*x^3 + 945*x^2 + 70*x + 1)/(x - 1)^18. (End)
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 175175*Pi^2/3 - 1493773847/2592.
Sum_{n>=0} (-1)^n/a(n) = 875*Pi^2/6 + 90112*log(2)/9 - 760090799/90720. (End)
EXAMPLE
If n=0 then C(0+7,7)*C(0+10,10) = C(7,7)*C(10,10) = 1*1 = 1.
If n=4 then C(4+7,7)*C(4+10,10) = C(11,7)*C(14,10) = 330*1001 = 330330.
MATHEMATICA
a[n_] := Binomial[n + 7, 7] * Binomial[n + 10, 10]; Array[a, 25, 0] (* Amiram Eldar, Sep 01 2022 *)
PROG
(PARI) a(n)={binomial(n+7, 7) * binomial(n+10, 10)} \\ Andrew Howroyd, Nov 08 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, May 26 2005
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Nov 08 2019
STATUS
approved