login
A194491
Number of ways to arrange 7 nonattacking knights on the lower triangle of an n X n board
1
0, 0, 0, 0, 88, 3300, 58630, 641678, 5025711, 30209361, 147914590, 614046090, 2226985986, 7218141771, 21280624486, 57867863073, 146765501360, 350324696309, 792870137966, 1711961366458, 3544779914099, 7069433034465, 13630030399362
OFFSET
1,5
COMMENTS
Column 7 of A194492
LINKS
FORMULA
Empirical: a(n) = (1/645120)*n^14 + (1/92160)*n^13 - (17/30720)*n^12 - (79/92160)*n^11 + (1047/10240)*n^10 - (29857/92160)*n^9 - (946249/92160)*n^8 + (48326573/645120)*n^7 + (7473253/15360)*n^6 - (153662159/23040)*n^5 - (1018307/768)*n^4 + (40217689/144)*n^3 - (212485407/280)*n^2 - (316047321/70)*n + 20362649 for n>16
EXAMPLE
Some solutions for 5X5
..0..........1..........0..........1..........0..........0..........1
..1.1........0.1........1.0........0.0........0.1........1.1........1.0
..0.0.0......1.0.1......1.0.0......0.0.1......1.0.0......1.0.0......1.0.0
..0.0.0.0....0.1.0.1....1.0.0.1....0.1.0.1....0.0.0.1....0.0.0.1....0.0.0.1
..1.1.1.1.1..0.0.0.0.1..1.0.0.1.1..1.0.1.0.1..1.0.1.1.1..1.0.1.1.0..1.0.0.1.1
CROSSREFS
Sequence in context: A248047 A107422 A210006 * A093288 A017804 A035739
KEYWORD
nonn
AUTHOR
R. H. Hardin Aug 26 2011
STATUS
approved