login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245954
Number of length 4+3 0..n arrays with some pair in every consecutive four terms totalling exactly n.
1
88, 1501, 7744, 31465, 82968, 199141, 397504, 754321, 1292440, 2144941, 3335808, 5074681, 7380184, 10560565, 14620288, 19990561, 26650584, 35181181, 45522880, 58435081, 73803928, 92598661, 114633024, 141119665, 171779608, 208104781
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 8*a(n-3) - 2*a(n-4) + 12*a(n-5) - 2*a(n-6) - 8*a(n-7) + 3*a(n-8) + 2*a(n-9) - a(n-10).
Conjectures from Colin Barker, Nov 05 2018: (Start)
G.f.: x*(88 + 1325*x + 4478*x^2 + 12178*x^3 + 8990*x^4 + 2708*x^5 - 310*x^6 - 658*x^7 + 2*x^8 - x^9) / ((1 - x)^6*(1 + x)^4).
a(n) = 1 + 34*n + 6*n^2 - 16*n^3 + 66*n^4 + 15*n^5 for n even.
a(n) = 58 + 57*n - 80*n^2 - 28*n^3 + 66*n^4 + 15*n^5 for n odd.
(End)
EXAMPLE
Some solutions for n=6:
..0....0....0....0....0....1....1....4....4....1....1....4....4....3....0....3
..6....6....5....5....5....4....3....1....6....0....0....5....3....6....0....2
..6....5....2....1....6....2....1....5....5....6....6....1....0....5....2....4
..3....1....4....4....0....2....5....5....0....0....0....5....6....1....4....1
..3....0....5....2....0....1....5....6....6....0....6....3....5....5....3....4
..6....1....1....1....3....4....6....0....5....5....4....6....1....5....2....2
..2....5....2....5....6....4....0....1....2....1....0....0....2....5....3....0
CROSSREFS
Row 4 of A245950
Sequence in context: A239274 A235018 A228810 * A248047 A107422 A210006
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 08 2014
STATUS
approved