login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245952
Number of length 2+3 0..n arrays with some pair in every consecutive four terms totalling exactly n.
1
26, 197, 676, 1889, 3966, 7669, 13064, 21281, 32290, 47621, 67116, 92737, 124166, 163829, 211216, 269249, 337194, 418501, 512180, 622241, 747406, 892277, 1055256, 1241569, 1449266, 1684229, 1944124, 2235521, 2555670, 2911861, 3300896, 3730817
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8).
Conjectures from Colin Barker, Nov 05 2018: (Start)
G.f.: x*(26 + 145*x + 230*x^2 + 299*x^3 + 18*x^4 - 141*x^5 - 2*x^6 + x^7) / ((1 - x)^5*(1 + x)^3).
a(n) = 1 + 12*n - 5*n^2 + 18*n^3 + 3*n^4 for n even.
a(n) = 16 - 5*n - 6*n^2 + 18*n^3 + 3*n^4 for n odd.
(End)
EXAMPLE
Some solutions for n=10:
..3....1....2....0....6....0....7....8....4...10....2....9....9....3....0....3
..9....1....2....3....6....8....0....5....9....5....6....3....2....0....1....2
..1....9...10...10....2....2...10....5....1....6....1....7....0...10....9....8
..1....6....0....0....4....0....9....0....6....5....4....2....8....6....8...10
..1....8...10....2...10....9....6....6....1....5....7....4....1....3...10....2
CROSSREFS
Row 2 of A245950.
Sequence in context: A090960 A357178 A262107 * A056026 A159762 A100242
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 08 2014
STATUS
approved