login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056026 Numbers k such that k^14 == 1 (mod 15^2). 10
1, 26, 199, 224, 226, 251, 424, 449, 451, 476, 649, 674, 676, 701, 874, 899, 901, 926, 1099, 1124, 1126, 1151, 1324, 1349, 1351, 1376, 1549, 1574, 1576, 1601, 1774, 1799, 1801, 1826, 1999, 2024, 2026, 2051, 2224, 2249, 2251, 2276, 2449, 2474, 2476, 2501 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Numbers congruent to {1, 26, 129, 224} mod 225.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Colin Barker)

Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).

FORMULA

G.f.: x*(1+25*x+173*x^2+25*x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011

a(1)=1, a(2)=26, a(3)=199, a(4)=224, a(5)=226, a(n) = a(n-1)+a(n-4)-a(n-5). - Harvey P. Dale, Nov 11 2011

a(n) = (-225 - 125*(-1)^n + (171-171*i)*(-i)^n + (171+171*i)*i^n + 450*n)/8 where i=sqrt(-1). - Colin Barker, Oct 16 2015

MATHEMATICA

Select[ Range[ 3000 ], PowerMod[ #, 14, 225 ]==1& ]

LinearRecurrence[{1, 0, 0, 1, -1}, {1, 26, 199, 224, 226}, 50] (* Harvey P. Dale, Nov 11 2011 *)

PROG

(PARI) a(n) = (-225 - 125*(-1)^n + (171-171*I)*(-I)^n + (171+171*I)*I^n + 450*n)/8 \\ Colin Barker, Oct 16 2015

(PARI) Vec(x*(1+25*x+173*x^2+25*x^3+x^4)/((1+x)*(1+x^2)*(x-1)^2) + O(x^100)) \\ Colin Barker, Oct 16 2015

CROSSREFS

Cf. A056021, A056022, A056024, A056025, A056027, A056028, A056031, A056034, A056035.

Sequence in context: A090960 A262107 A245952 * A159762 A100242 A042310

Adjacent sequences:  A056023 A056024 A056025 * A056027 A056028 A056029

KEYWORD

nonn,easy

AUTHOR

Robert G. Wilson v, Jun 08 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 03:23 EST 2021. Contains 349625 sequences. (Running on oeis4.)