login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k^14 == 1 (mod 15^2).
10

%I #31 Jun 30 2021 02:33:42

%S 1,26,199,224,226,251,424,449,451,476,649,674,676,701,874,899,901,926,

%T 1099,1124,1126,1151,1324,1349,1351,1376,1549,1574,1576,1601,1774,

%U 1799,1801,1826,1999,2024,2026,2051,2224,2249,2251,2276,2449,2474,2476,2501

%N Numbers k such that k^14 == 1 (mod 15^2).

%C Numbers congruent to {1, 26, 129, 224} mod 225.

%H Amiram Eldar, <a href="/A056026/b056026.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Colin Barker)

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).

%F G.f.: x*(1+25*x+173*x^2+25*x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - _R. J. Mathar_, Oct 25 2011

%F a(1)=1, a(2)=26, a(3)=199, a(4)=224, a(5)=226, a(n) = a(n-1)+a(n-4)-a(n-5). - _Harvey P. Dale_, Nov 11 2011

%F a(n) = (-225 - 125*(-1)^n + (171-171*i)*(-i)^n + (171+171*i)*i^n + 450*n)/8 where i=sqrt(-1). - _Colin Barker_, Oct 16 2015

%t Select[ Range[ 3000 ], PowerMod[ #, 14, 225 ]==1& ]

%t LinearRecurrence[{1,0,0,1,-1},{1,26,199,224,226},50] (* _Harvey P. Dale_, Nov 11 2011 *)

%o (PARI) a(n) = (-225 - 125*(-1)^n + (171-171*I)*(-I)^n + (171+171*I)*I^n + 450*n)/8 \\ _Colin Barker_, Oct 16 2015

%o (PARI) Vec(x*(1+25*x+173*x^2+25*x^3+x^4)/((1+x)*(1+x^2)*(x-1)^2) + O(x^100)) \\ _Colin Barker_, Oct 16 2015

%Y Cf. A056021, A056022, A056024, A056025, A056027, A056028, A056031, A056034, A056035.

%K nonn,easy

%O 1,2

%A _Robert G. Wilson v_, Jun 08 2000