login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056021
Numbers k such that k^4 == 1 (mod 5^2).
11
1, 7, 18, 24, 26, 32, 43, 49, 51, 57, 68, 74, 76, 82, 93, 99, 101, 107, 118, 124, 126, 132, 143, 149, 151, 157, 168, 174, 176, 182, 193, 199, 201, 207, 218, 224, 226, 232, 243, 249, 251, 257, 268, 274, 276, 282, 293, 299, 301, 307, 318, 324, 326, 332, 343, 349
OFFSET
1,2
COMMENTS
Numbers congruent to {1, 7, 18, 24} mod 25.
These terms (apart from 1) are tetration bases characterized by a constant convergence speed strictly greater than 1 (see A317905). - Marco Ripà, Jan 25 2024
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Colin Barker)
FORMULA
G.f.: x*(x^2+3*x+1)^2 / ((1+x)*(x^2+1)*(x-1)^2). - R. J. Mathar, Oct 25 2011
a(n) = (-25 - (-1)^n + (9-9*i)*(-i)^n + (9+9*i)*i^n + 50*n) / 8, where i = sqrt(-1). - Colin Barker, Oct 16 2015
MATHEMATICA
Select[ Range[ 400 ], PowerMod[ #, 4, 25 ]==1& ]
PROG
(PARI) a(n) = (-25 - (-1)^n + (9-9*I)*(-I)^n + (9+9*I)*I^n + 50*n) / 8 \\ Colin Barker, Oct 16 2015
(PARI) Vec(x*(x^2+3*x+1)^2/((1+x)*(x^2+1)*(x-1)^2) + O(x^100)) \\ Colin Barker, Oct 16 2015
(PARI) for(n=0, 1e3, if(n^4 % 5^2 == 1, print1(n", "))) \\ Altug Alkan, Oct 16 2015
(PARI) isok(k) = Mod(k, 25)^4 == 1; \\ Michel Marcus, Jun 30 2021
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Jun 08 2000
STATUS
approved