OFFSET
1,2
COMMENTS
Numbers congruent to {1, 7, 18, 24} mod 25.
These terms (apart from 1) are tetration bases characterized by a constant convergence speed strictly greater than 1 (see A317905). - Marco Ripà, Jan 25 2024
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Colin Barker)
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
G.f.: x*(x^2+3*x+1)^2 / ((1+x)*(x^2+1)*(x-1)^2). - R. J. Mathar, Oct 25 2011
a(n) = (-25 - (-1)^n + (9-9*i)*(-i)^n + (9+9*i)*i^n + 50*n) / 8, where i = sqrt(-1). - Colin Barker, Oct 16 2015
MATHEMATICA
Select[ Range[ 400 ], PowerMod[ #, 4, 25 ]==1& ]
PROG
(PARI) a(n) = (-25 - (-1)^n + (9-9*I)*(-I)^n + (9+9*I)*I^n + 50*n) / 8 \\ Colin Barker, Oct 16 2015
(PARI) Vec(x*(x^2+3*x+1)^2/((1+x)*(x^2+1)*(x-1)^2) + O(x^100)) \\ Colin Barker, Oct 16 2015
(PARI) for(n=0, 1e3, if(n^4 % 5^2 == 1, print1(n", "))) \\ Altug Alkan, Oct 16 2015
(PARI) isok(k) = Mod(k, 25)^4 == 1; \\ Michel Marcus, Jun 30 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Jun 08 2000
STATUS
approved