login
A056035
Numbers k such that k^30 == 1 (mod 31^2).
10
1, 115, 117, 145, 229, 235, 333, 338, 374, 388, 414, 430, 439, 440, 448, 513, 521, 522, 531, 547, 573, 587, 623, 628, 726, 732, 816, 844, 846, 960, 962, 1076, 1078, 1106, 1190, 1196, 1294, 1299, 1335, 1349, 1375, 1391, 1400, 1401, 1409, 1474, 1482, 1483
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
FORMULA
From Mike Sheppard, Feb 20 2025 : (Start)
a(n) = a(n-1) + a(n-30) - a(n-31).
a(n) = a(n-30) + 31^2.
a(n) ~ (31^2/30)*n. (End)
MATHEMATICA
x=31; Select[ Range[ 2000 ], PowerMod[ #, x-1, x^2 ]==1& ]
KEYWORD
nonn,easy,changed
AUTHOR
Robert G. Wilson v, Jun 08 2000
STATUS
approved