|
|
A060309
|
|
A001067 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n.
|
|
0
|
|
|
1, 0, 0, 0, 0, 115, 0, 452, 4874, 17461, 7062, 19696950, 50610, 242341439, 114877883680, 481832564850, 8919335150, 1461959530725190712, 8116326631140, 13054135924822447372, 72385602091336704890
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,6
|
|
LINKS
|
Table of n, a(n) for n=1..21.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
T. Ward, Exactly realizable sequences
|
|
FORMULA
|
If b(n) is the n-th term of A001067, then a(n)=(1/n)* |Sum_{d|n}mu(d)b(n/d)|, n<>2.
|
|
EXAMPLE
|
a(11) = 7062 because the 11th term of A001067 is 77683 and the first term is 1, so there should be (77683-1)/11 = 7062 orbits of length 11.
|
|
CROSSREFS
|
Cf. A001067, A060171, A060479.
Sequence in context: A230463 A200807 A084877 * A101111 A129823 A056035
Adjacent sequences: A060306 A060307 A060308 * A060310 A060311 A060312
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Thomas Ward (t.ward(AT)uea.ac.uk), Apr 10 2001
|
|
STATUS
|
approved
|
|
|
|