login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060311 E.g.f.: exp((exp(x)-1)^2/2). 4
1, 0, 1, 3, 10, 45, 241, 1428, 9325, 67035, 524926, 4429953, 40010785, 384853560, 3925008361, 42270555603, 478998800290, 5693742545445, 70804642315921, 918928774274028, 12419848913448565, 174467677050577515, 2542777209440690806, 38388037137038323353 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

After the first term, this is the Stirling transform of the sequence of moments of the standard normal (or "Gaussian") probability distribution. It is not itself a moment sequence of any probability distribution. - Michael Hardy (hardy(AT)math.umn.edu), May 29 2005

a(n) is the number of simple labeled graphs on n nodes in which each component is a complete bipartite graph. - Geoffrey Critzer, Dec 03 2011

REFERENCES

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, Ex. 3.3.5b.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..518 (first 101 terms from Harry J. Smith)

P. Barry, Constructing Exponential Riordan Arrays from Their A and Z Sequences, Journal of Integer Sequences, 17 (2014), #14.2.6.

Vaclav Kotesovec, Asymptotic solution of the equations using the Lambert W-function

FORMULA

E.g.f. A(x) = B(exp(x)-1) where B(x)=exp(x^2/2) is e.g.f. of A001147(2n), hence a(n) is the Stirling transform of A001147(2n). - Michael Somos, Jun 01 2005

From Vaclav Kotesovec, Aug 06 2014: (Start)

a(n) ~ exp(1/2*(exp(r)-1)^2 - n) * n^(n+1/2) / (r^n * sqrt(exp(r)*r*(-1-r+exp(r)*(1+2*r)))), where r is the root of the equation exp(r)*(exp(r) - 1)*r = n.

(a(n)/n!)^(1/n) ~ 2*exp(1/LambertW(2*n)) / LambertW(2*n).

(End)

MAPLE

a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)

      *binomial(n-1, j-1)*Stirling2(j, 2), j=2..n))

    end:

seq(a(n), n=0..25);  # Alois P. Heinz, Sep 02 2019

MATHEMATICA

a = Exp[x] - 1; Range[0, 20]! CoefficientList[Series[Exp[a^2/2], {x, 0, 20}], x] (* Geoffrey Critzer, Dec 03 2011 *)

PROG

(PARI) a(n)=if(n<0, 0, n!*polcoeff( exp((exp(x+x*O(x^n))-1)^2/2), n)) /* Michael Somos, Jun 01 2005 */

(PARI) { for (n=0, 100, write("b060311.txt", n, " ", n!*polcoeff(exp((exp(x + x*O(x^n)) - 1)^2/2), n)); ) } \\ Harry J. Smith, Jul 03 2009

CROSSREFS

Column k=2 of A324162.

Cf. A052859.

Sequence in context: A211193 A134018 A028417 * A184947 A330250 A207652

Adjacent sequences:  A060308 A060309 A060310 * A060312 A060313 A060314

KEYWORD

nonn

AUTHOR

Vladeta Jovovic, Mar 27 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 15:52 EDT 2021. Contains 345143 sequences. (Running on oeis4.)