login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052859
Expansion of e.g.f.: exp(exp(2*x) - 2*exp(x) + 1).
9
1, 0, 2, 6, 26, 150, 962, 6846, 54266, 471750, 4439762, 44911086, 485570186, 5581383990, 67890295202, 870493380126, 11726471352986, 165475293394470, 2439632685738482, 37491028556508366, 599285435979866666, 9945441791592272790, 171062503783616702402
OFFSET
0,3
COMMENTS
Previous name was: A simple grammar.
a(n) is the number of ways to select a nonempty proper subset from each block of the set partitions of {1,2,...,n}. - Geoffrey Critzer, Jan 20 2012
LINKS
Vaclav Kotesovec, Asymptotics for a certain group of exponential generating functions, arXiv:2207.10568 [math.CO], Jul 13 2022 (set m=1, b=2, r=-2, d=1, s=1).
FORMULA
E.g.f.: exp(exp(x)^2-2*exp(x)+1).
Stirling transform of unsigned Hermite numbers: Sum_{k=0..n} Stirling2(n, k)*|HermiteH(k, 0)|. - Vladeta Jovovic, Sep 12 2003
From Seiichi Manyama, May 07 2022: (Start)
G.f.: Sum_{k>=0} (2*k)! * x^(2*k)/(k! * Product_{j=1..2*k} (1 - j * x)).
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling2(n,2*k)/k!. (End)
a(n) ~ 2^n * exp(1/2 - n - 2*sqrt(n/LambertW(n)) + n/LambertW(n)) * n^n / (sqrt(1 + LambertW(n)) * LambertW(n)^n). - Vaclav Kotesovec, Oct 04 2022
MAPLE
spec := [S, {B=Prod(C, C), C=Set(Z, 1 <= card), S=Set(B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*2*binomial(n-1, j-1)*Stirling2(j, 2), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 02 2019
MATHEMATICA
nn=20; a=Exp[x]-1; Range[0, nn]! CoefficientList[Series[Exp[a^2], {x, 0, nn}], x] (* Geoffrey Critzer, Jan 20 2012 *)
Table[Sum[BellY[n, k, 2^Range[n] - 2], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
Table[Sum[(2*k)!*StirlingS2[n, 2*k]/k!, {k, 0, n/2}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 04 2022 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (2*k)!*x^(2*k)/(k!*prod(j=1, 2*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
(PARI) a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/k!); \\ Seiichi Manyama, May 07 2022
CROSSREFS
Sequence in context: A052844 A375629 A247224 * A103937 A159311 A000629
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name using e.g.f. from Vaclav Kotesovec, Oct 04 2022
STATUS
approved