OFFSET
0,2
COMMENTS
Previous name was: A simple grammar.
Stirling transform of A005212(n-1)=[1,1,0,6,0,120,0,...] is a(n-1)=[1,2,4,14,76,...]. - Michael Somos, Mar 04 2004
Stirling transform of (-1)^n*A052612(n-1)=[0,2,-2,12,-24,...] is a(n-1)=[0,2,4,14,76,...]. - Michael Somos, Mar 04 2004
Stirling transform of A000142(n)=[2,2,6,24,120,...] is a(n)=[2,2,4,14,76,...]. - Michael Somos, Mar 04 2004
LINKS
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 824
FORMULA
E.g.f.: (1-3*exp(x)+exp(x)^2)/(-2+exp(x))
a(n) ~ n!/(2*(log(2))^(n+1)). - Vaclav Kotesovec, Oct 05 2013
MAPLE
spec := [S, {B=Sequence(C), C=Set(Z, 1 <= card), S=Union(B, C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1-3Exp[x]+Exp[x]^2)/(-2+Exp[x]), {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Nov 24 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, n!*polcoeff(subst(y+1/(1-y), y, exp(x+x*O(x^n))-1), n))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name using e.g.f., Vaclav Kotesovec, Oct 05 2013
STATUS
approved