login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052857
A simple grammar. a(n)=n*A052873(n-1).
2
0, 1, 2, 15, 184, 3145, 68976, 1846999, 58413440, 2130740721, 88061420800, 4066862460991, 207556068584448, 11600364266112505, 704664527894104064, 46226086991634882375, 3256882066245640093696, 245279323467051422886241
OFFSET
0,3
FORMULA
E.g.f.: exp(RootOf(exp(_Z)*x*_Z+exp(_Z)*x-_Z))*x.
a(n) = (n-1)!*Sum_{k=1..n-1} n^k*binomial(n-2,k-1)/k!, a(1)=1. - Vladimir Kruchinin, May 10 2011
a(n) = n!*hypergeom([-n+2], [2], -n) for n>=2. - Peter Luschny, Apr 20 2016
a(n) ~ exp(n/phi - n) * phi^(2*n-2) * n^(n-1) / 5^(1/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 01 2017
E.g.f. A(x) satisfies: A(x) = x*exp(A(x)/(1 - A(x))). - Ilya Gutkovskiy, Apr 04 2019
a(n) = n * (n-2)! * LaguerreL(n-2, 1, -n) with a(0) = 0 and a(1) = 1. - G. C. Greubel, Feb 23 2021
MAPLE
spec := [S, {C=Set(B), S=Prod(Z, C), B=Sequence(S, 1<= card)}, labeled]:
seq(combstruct[count](spec, size=n), n=0..20);
# Alternatively:
a := n -> `if`(n<2, n, n!*hypergeom([-n+2], [2], -n));
seq(simplify(a(n)), n=0..17); # Peter Luschny, Apr 20 2016
MATHEMATICA
Table[If[0<=n<=1, n, (n-1)! Sum[(n^k Binomial[n-2, k-1])/k!, {k, n-1}]], {n, 0, 20}] (* Michael De Vlieger, Apr 20 2016 *)
Table[If[n<2, n, n*(n-2)!*LaguerreL[n-2, 1, -n]], {n, 0, 20}] (* G. C. Greubel, Feb 23 2021 *)
PROG
(Maxima)
a(n):=if n=1 then 1 else ((n-1)!*sum((n^k*binomial(n-2, k-1))/k!, k, 1, n-1)); /* Vladimir Kruchinin, May 10 2011 */
(SageMath) [n if n<2 else n*factorial(n-2)*gen_laguerre(n-2, 1, -n) for n in (0..20)] # G. C. Greubel, Feb 23 2021
(Magma) [n lt 2 select n else n*Factorial(n-2)*Evaluate(LaguerrePolynomial(n-2, 1), -n): n in [0..20]]; // G. C. Greubel, Feb 23 2021
CROSSREFS
Sequence in context: A208409 A196792 A210655 * A053492 A319834 A268420
KEYWORD
easy,nonn,changed
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved