login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210655
Number of irreducible coverings by edges of the complete bipartite graph K_{n,n}; main diagonal of A210654.
3
1, 2, 15, 184, 2945, 63756, 1748803, 58746304, 2361347073, 111310111900, 6059192459771, 376064819659728, 26330615879623393, 2061099487899901372, 178985517944285956275, 17127853895338704829696, 1795558477562697433148417, 205139946486547987323752124
OFFSET
1,2
COMMENTS
In other words, the number of minimal edge covers in the complete bipartite graph K_{n,n}. - Andrew Howroyd, Aug 04 2017
LINKS
Ioan Tomescu, Some properties of irreducible coverings by cliques of complete multipartite graphs, J. Combin. Theory Ser. B 28 (1980), no. 2, 127--141. MR0572469 (81i:05106).
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
Eric Weisstein's World of Mathematics, Minimal Edge Cover
FORMULA
a(n) = n!^2 [x^n y^n] exp(x*exp(y)+y*exp(x)-x-y-x*y)-1. - Alois P. Heinz, Feb 10 2013
MAPLE
T:= proc(p, q) option remember; `if`(p=1 or q=1, 1,
add(binomial(q, r) *T(p-1, q-r), r=2..q-1)
+q*add(binomial(p-1, s) *T(p-s-1, q-1), s=0..p-2))
end:
a:= n-> T(n, n):
seq(a(n), n=1..20); # Alois P. Heinz, Feb 10 2013
MATHEMATICA
T[p_, q_] := T[p, q] = If[p == 1 || q === 1, 1, Sum[Binomial[q, r]*T[p - 1, q - r], {r, 2, q - 1}] + q*Sum[Binomial[p - 1, s]*T[p - s - 1, q - 1], {s, 0, p - 2}]]; a[n_] := T[n, n]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Mar 24 2014, after Alois P. Heinz *)
With[{ser = Series[Exp[x Exp[y] + y Exp[x] - x - y - x y] - 1, {x, 0, 20}, {y, 0, 20}]}, Table[(n!)^2 Coefficient[ser, x^n y^n], {n, 20}]] (* Eric W. Weisstein, Aug 10 2017 *)
CROSSREFS
Cf. A053530 (complete graph), A210654.
Sequence in context: A099709 A208409 A196792 * A052857 A053492 A319834
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 27 2012
EXTENSIONS
More terms from Alois P. Heinz, Feb 10 2013
STATUS
approved