login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210656 Expansion of psi(x^3) * phi(-x)^2 / phi(-x^2) in power of x where phi(), psi() are Ramanujan theta functions. 2
1, 8, 36, 130, 412, 1176, 3105, 7712, 18192, 41098, 89476, 188592, 386322, 771528, 1506036, 2879688, 5403628, 9966408, 18092599, 32366288, 57117660, 99526362, 171378512, 291841464, 491812740, 820684904, 1356794820, 2223458146, 3613417008, 5825889936 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..2000

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^(-3/4) * ( eta(q^2)^4 * eta(q^6)^2 / (eta(q)^4 * eta(q^3) * eta(q^ 4)) )^2 in powers of q.

Euler transform of period 12 sequence [ 8, 0, 10, 2, 8, -2, 8, 2, 10, 0, 8, 0, ...].

A001936(9*n + 2) - A001936(n) = 4 * a(3*n). A001936(9*n + 5) = 4 * a(3*n + 1). A001936(9*n + 8) = 4 * a(3*n + 2).

a(n) ~ exp(sqrt(3*n)*Pi) / (32*sqrt(2)*3^(3/4)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017

EXAMPLE

1 + 8*x + 36*x^2 + 130*x^3 + 412*x^4 + 1176*x^5 + 3105*x^6 + 7712*x^7 + ...

q^3 + 8*q^7 + 36*q^11 + 130*q^15 + 412*q^19 + 1176*q^23 + 3105*q^27 + ...

MATHEMATICA

nmax = 30; CoefficientList[Series[Product[((1 - x^(2*k))^4 * (1 - x^(6*k))^2 / ((1 - x^k)^4 * (1 - x^(3*k)) * (1 - x^(4*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 16 2017 *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^2 + A)^4 * eta(x^6 + A)^2 / (eta(x + A)^4 * eta(x^3 + A) * eta(x^ 4 + A)) )^2, n))}

CROSSREFS

Cf. A001936.

Sequence in context: A014477 A034998 A121255 * A119767 A024208 A000427

Adjacent sequences:  A210653 A210654 A210655 * A210657 A210658 A210659

KEYWORD

nonn

AUTHOR

Michael Somos, Mar 27 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 04:20 EST 2021. Contains 349562 sequences. (Running on oeis4.)