login
A210656
Expansion of psi(x^3) * phi(-x)^2 / phi(-x^2) in power of x where phi(), psi() are Ramanujan theta functions.
2
1, 8, 36, 130, 412, 1176, 3105, 7712, 18192, 41098, 89476, 188592, 386322, 771528, 1506036, 2879688, 5403628, 9966408, 18092599, 32366288, 57117660, 99526362, 171378512, 291841464, 491812740, 820684904, 1356794820, 2223458146, 3613417008, 5825889936
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-3/4) * ( eta(q^2)^4 * eta(q^6)^2 / (eta(q)^4 * eta(q^3) * eta(q^ 4)) )^2 in powers of q.
Euler transform of period 12 sequence [ 8, 0, 10, 2, 8, -2, 8, 2, 10, 0, 8, 0, ...].
A001936(9*n + 2) - A001936(n) = 4 * a(3*n). A001936(9*n + 5) = 4 * a(3*n + 1). A001936(9*n + 8) = 4 * a(3*n + 2).
a(n) ~ exp(sqrt(3*n)*Pi) / (32*sqrt(2)*3^(3/4)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
1 + 8*x + 36*x^2 + 130*x^3 + 412*x^4 + 1176*x^5 + 3105*x^6 + 7712*x^7 + ...
q^3 + 8*q^7 + 36*q^11 + 130*q^15 + 412*q^19 + 1176*q^23 + 3105*q^27 + ...
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[((1 - x^(2*k))^4 * (1 - x^(6*k))^2 / ((1 - x^k)^4 * (1 - x^(3*k)) * (1 - x^(4*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 16 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^2 + A)^4 * eta(x^6 + A)^2 / (eta(x + A)^4 * eta(x^3 + A) * eta(x^ 4 + A)) )^2, n))}
CROSSREFS
Cf. A001936.
Sequence in context: A014477 A034998 A121255 * A119767 A024208 A000427
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 27 2012
STATUS
approved