login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210654
Triangle read by rows: T(n,k) (1 <= k <= n) = number of irreducible coverings by edges of the complete bipartite graph K_{n,k}.
2
1, 1, 2, 1, 6, 15, 1, 14, 48, 184, 1, 30, 165, 680, 2945, 1, 62, 558, 2664, 13080, 63756, 1, 126, 1827, 11032, 59605, 320292, 1748803, 1, 254, 5820, 46904, 281440, 1663248, 9791824, 58746304, 1, 510, 18177, 200232, 1379745, 8906544, 56499849, 361679040, 2361347073
OFFSET
1,3
LINKS
Ioan Tomescu, Some properties of irreducible coverings by cliques of complete multipartite graphs, J. Combin. Theory Ser. B 28 (1980), no. 2, 127--141. MR0572469 (81i:05106).
FORMULA
E.g.f.: exp(x*exp(y)+y*exp(x)-x-y-x*y)-1. - Alois P. Heinz, Feb 10 2013
EXAMPLE
Triangle begins:
1;
1, 2;
1, 6, 15;
1, 14, 48, 184;
1, 30, 165, 680, 2945;
1, 62, 558, 2664, 13080, 63756;
1, 126, 1827, 11032, 59605, 320292, 1748803;
1, 254, 5820, 46904, 281440, 1663248, 9791824, 58746304;
...
MAPLE
T:= proc(p, q) option remember; `if`(p=1 or q=1, 1,
add(binomial(q, r) *T(p-1, q-r), r=2..q-1)
+q*add(binomial(p-1, s) *T(p-s-1, q-1), s=0..p-2))
end:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Feb 10 2013
MATHEMATICA
T[p_, q_] := T[p, q] = If[p == 1 || q == 1, 1, Sum[Binomial[q, r]*T[p-1, q-r], {r, 2, q-1}] + q*Sum[Binomial[p-1, s]*T[p-s-1, q-1], {s, 0, p-2}]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
PROG
(PARI) all(m) = {
mat = matrix(m, m);
for (i=1, m, for (j=1, m,
if ((i == 1) || (j == 1), mat[i, j] = 1,
if (i == j, mat[i, j] = i*mat[i-1, i-1] + sum(s=2, i-1, (s+1)*binomial(i, s)*mat[i-1, i-s]),
mat[i, j] = sum(r=2, j-1, binomial(j, r)*mat[i-1, j-r]) + j*sum(s=0, i-2, binomial(i-1, s)*mat[i-s-1, j-1]));
);
);
);
for (i=1, m, for (j=1, i, print1(mat[i, j], ", "); ); print(""); );
print("");
for (i=1, m, print1(mat[i, i], ", "); );
} \\ Michel Marcus, Feb 10 2013
CROSSREFS
Cf. A210655.
Sequence in context: A282329 A343806 A372254 * A068797 A254639 A049951
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Mar 27 2012
STATUS
approved