login
A210658
Triangle of partial sums of Catalan numbers.
3
1, 2, 1, 4, 3, 2, 9, 8, 7, 5, 23, 22, 21, 19, 14, 65, 64, 63, 61, 56, 42, 197, 196, 195, 193, 188, 174, 132, 626, 625, 624, 622, 617, 603, 561, 429, 2056, 2055, 2054, 2052, 2047, 2033, 1991, 1859, 1430, 6918, 6917, 6916, 6914, 6909, 6895, 6853, 6721, 6292
OFFSET
0,2
COMMENTS
Diagonal elements = Catalan numbers (A000108).
First column = partial sums of Catalan numbers (A014137).
Row sums = partial sums of central binomial coefficients (A006134).
Row square-sums = A182018. - Emanuele Munarini, Apr 06 2012
Central coefficients = A210670.
LINKS
Vincenzo Librandi, Rows n = 0..100, flattened
FORMULA
Recurrence: T(n+1,k+1) = T(n,k)+C(n+1)-C(k).
G.f. (C(x)-y*C(x*y))/((1-x)*(1-y)), where C(x)=(1-sqrt(1-4x))/(2x) is the generating series for the Catalan numbers.
EXAMPLE
Triangle begins:
1,
2, 1,
4, 3, 2,
9, 8, 7, 5,
23, 22, 21, 19, 14,
65, 64, 63, 61, 56, 42,
197, 196, 195, 193, 188, 174, 132
MATHEMATICA
Flatten[Table[Sum[Binomial[2i, i]/(i+1), {i, k, n}], {n, 0, 10}, {k, 0, n}]]
PROG
(Maxima) create_list(sum(binomial(2*i, i)/(i+1), i, k, n), n, 0, 10, k, 0, n);
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Emanuele Munarini, Mar 28 2012
STATUS
approved