login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210670
Central coefficients of triangle A210658.
2
1, 3, 21, 193, 2047, 23691, 290447, 3707655, 48759741, 656041801, 8987420549, 124936234413, 1757899936601, 24987199202193, 358268701125657, 5175497417194889, 75254198323775151, 1100534370850391355, 16176618251488501319, 238861285362639306383
OFFSET
0,2
LINKS
FORMULA
a(n) = sum(C(i),i=n..2*n), where the C(n)'s are the Catalan numbers.
Recurrence: a(n+1)=a(n)+C(2n+2)+C(2n+1)-C(n).
Recurrence: (n-1)*n*(2*n+1)*(10*n^3 - 51*n^2 + 86*n - 49)*a(n) = 3*(n-1)*(140*n^5 - 844*n^4 + 1851*n^3 - 1784*n^2 + 701*n - 70)*a(n-1) - 6*(280*n^6 - 2308*n^5 + 7496*n^4 - 12166*n^3 + 10376*n^2 - 4523*n + 875)*a(n-2) + 4*(2*n-5)*(4*n-9)*(4*n-7)*(10*n^3 - 21*n^2 + 14*n - 4)*a(n-3). - Vaclav Kotesovec, Aug 13 2013
a(n) ~ 16^n/(3*sqrt(Pi/2)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
MATHEMATICA
Table[Sum[Binomial[2i, i]/(i+1), {i, n, 2n}], {n, 0, 100}]
PROG
(Maxima) makelist(sum(binomial(2*i, i)/(i+1), i, n, 2*n), n, 0, 12);
CROSSREFS
Cf. A210658.
Sequence in context: A292361 A369783 A151388 * A193468 A132863 A202826
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Mar 28 2012
STATUS
approved