OFFSET
0,2
COMMENTS
Consider the sequence defined by a(0) = 1; thereafter a(n) = c*Sum_{k = 1..n} binomial(2n,2k)*a(n-k). For c = -3, -2, -1, 1, 2, 3, 4 this is A210676, A210657, A028296, A094088, A210672, A210674, A249939.
Exp( Sum_{n >= 1} a(n)*x^n/n) is the o.g.f. for A255929. - Peter Bala, Mar 13 2015
The Stirling-Bernoulli transform of Fibonacci(n+1) = 1, 1, 2, 3, 5, 8, 13, ... is 1, 0, 2, 0, 26, 0, 842, 0, 50906, 0, ... - Philippe Deléham, May 25 2015
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..220
Hacène Belbachir, Yahia Djemmada, On central Fubini-like numbers and polynomials, arXiv:1811.06734 [math.CO], 2018. See p. 4.
FORMULA
a(n) ~ 2*sqrt(Pi/5) * n^(2*n+1/2) / (exp(2*n) * (log((1+sqrt(5))/2))^(2*n+1)). - Vaclav Kotesovec, Mar 13 2015
E.g.f.: 1/(3-2*cosh(x)) (even coefficients). - Vaclav Kotesovec, Mar 14 2015
a(n) = Sum_{k=0..n} A241171(n, k)*2^k. - Peter Luschny, Sep 03 2022
MAPLE
f:=proc(n, k) option remember; local i;
if n=0 then 1
else k*add(binomial(2*n, 2*i)*f(n-i, k), i=1..floor(n)); fi; end;
g:=k->[seq(f(n, k), n=0..40)];
g(2);
MATHEMATICA
nmax=20; Table[(CoefficientList[Series[1/(3-2*Cosh[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n, 0, nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 28 2012
STATUS
approved