login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059516
Number of different relations between n intervals (possibly of zero length) on a line.
5
1, 2, 26, 818, 47834, 4488722, 617364026, 117029670578, 29247820616474, 9318336983422802, 3686400233750527226, 1772940711343815069938, 1018732890334074636017114, 689260602916515788253448082, 542377407779814380777057527226, 491141384755777675851883392430898
OFFSET
0,2
LINKS
IBM Ponder This, Jan 01 2001
FORMULA
a(n) = 2*A055203(n)-0^n = Sum_k A059515(k, n).
a(n) = Sum_{m>=0} binomial(m+1,2)^n/2^(m+1). a(n) = (1/2^n)*Sum_{k=0..n} binomial(n,k)*A000670(n+k). - Vladeta Jovovic, Aug 17 2006
E.g.f. as a continued fraction: 1/(1 + 2*(1 - exp(t))/(1 + 2*(1 - exp(2*t))/(1 + 2*(1 - exp(3*t))/(1 + ...)))) = 1 + 2*t + 26*t^2/2! + .... See A300729. - Peter Bala, Jun 13 2019
EXAMPLE
a(1)=2 since if a is starting point of interval and A is end point then possibilities are aA (zero length) or a-A (positive length). a(2)=26 since possibilities are: aAbB, aAb-B, b-aAB, abB-A, a-AbB, ab-AB, aA-bB, bB-aA, aA-b-B, b-aA-B, b-B-aA, bB-a-A, a-bB-A, a-A-bB, ab-A-B, ab-B-A, a-b-AB, b-a-AB, a-bA-B, b-a-AB, a-A-b-B, a-b-A-B, a-b-B-A, b-B-a-A, b-a-B-A, b-a-A-B.
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n, j), j=1..n))
end:
a:= n-> add(b(n+k)*binomial(n, k), k=0..n)/2^n:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 10 2018
MATHEMATICA
T[0, 0] = 1; T[n_, k_] := Sum[(-1)^(k-i) Binomial[k, i] (i(i+1)/2)^n, {i, 0, k}];
a[n_] := Sum[T[n, k], {k, 1, 2n}]; a[0] = 1;
a /@ Range[0, 20] (* Jean-François Alcover, Oct 27 2020, from A300729 *)
CROSSREFS
Row n=2 of A316674. Row sums of A300729.
Sequence in context: A329556 A316747 A354244 * A210672 A290688 A173103
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jan 19 2001
STATUS
approved