login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319834
a(n) = coefficient of x^n*y^(n+1)/n! in log( Sum_{n>=0} (n^2 + n*y + y^2)^n * x^n/n! ).
8
1, 2, 15, 184, 3325, 79056, 2345539, 83505920, 3472829721, 165321395200, 8868765212791, 529513463098368, 34831327847918485, 2503184803456354304, 195151614670701520875, 16405316791445973139456, 1479333355684885588136881, 142443466217414911148359680, 14587416733382035646737882591, 1583199811285962289889116160000
OFFSET
1,2
COMMENTS
E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! equals the logarithm of the e.g.f. of A319147.
LINKS
FORMULA
a(n) ~ c * d^n * n! / n^(5/2), where d = 6.1601834100761946... (same as for A319147) and c = 0.193396776821391327... - Vaclav Kotesovec, Mar 19 2024
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 15*x^3/3! + 184*x^4/4! + 3325*x^5/5! + 79056*x^6/6! + 2345539*x^7/7! + 83505920*x^8/8! + 3472829721*x^9/9! + ...
Exponentiation yields the e.g.f. of A319147:
exp(A(x)) = 1 + x + 3*x^2/2! + 22*x^3/3! + 269*x^4/4! + 4776*x^5/5! + 111967*x^6/6! + 3280264*x^7/7! + 115550073*x^8/8! +...+ A319147(n)*x^n/n! + ...
which equals
Limit_{N->oo} [ Sum_{n>=0} (N^2 + N*n + n^2)^n * (x/N)^n/n! ]^(1/N).
RELATED SEQUENCES.
a(n) is divisible by n where a(n)/n begins:
[1, 1, 5, 46, 665, 13176, 335077, 10438240, 385869969, 16532139520, ...].
PROG
(PARI) {a(n) = n! * polcoeff( polcoeff( log( sum(m=0, 2*n, (m^2 + m*y + y^2)^m *x^m/m! ) +x*O(x^(2*n)) ), n, x), n+1, y)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A210655 A052857 A053492 * A268420 A208402 A098343
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 30 2018
STATUS
approved