login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319834 a(n) = coefficient of x^n*y^(n+1)/n! in log( Sum_{n>=0} (n^2 + n*y + y^2)^n * x^n/n! ). 3
1, 2, 15, 184, 3325, 79056, 2345539, 83505920, 3472829721, 165321395200, 8868765212791, 529513463098368, 34831327847918485, 2503184803456354304, 195151614670701520875, 16405316791445973139456, 1479333355684885588136881, 142443466217414911148359680, 14587416733382035646737882591, 1583199811285962289889116160000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! equals the logarithm of the e.g.f. of A319147.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..100

EXAMPLE

E.g.f.: A(x) = x + 2*x^2/2! + 15*x^3/3! + 184*x^4/4! + 3325*x^5/5! + 79056*x^6/6! + 2345539*x^7/7! + 83505920*x^8/8! + 3472829721*x^9/9! + ...

Exponentiation yields the e.g.f. of A319147:

exp(A(x)) = 1 + x + 3*x^2/2! + 22*x^3/3! + 269*x^4/4! + 4776*x^5/5! + 111967*x^6/6! + 3280264*x^7/7! + 115550073*x^8/8! +...+ A319147(n)*x^n/n! + ...

which equals

Limit_{N->oo} [ Sum_{n>=0} (N^2 + N*n + n^2)^n * (x/N)^n/n! ]^(1/N).

RELATED SEQUENCES.

a(n) is divisible by n where a(n)/n begins:

[1, 1, 5, 46, 665, 13176, 335077, 10438240, 385869969, 16532139520, ...].

PROG

(PARI) {a(n) = n! * polcoeff( polcoeff( log( sum(m=0, 2*n, (m^2 + m*y + y^2)^m *x^m/m! ) +x*O(x^(2*n)) ), n, x), n+1, y)}

for(n=1, 20, print1(a(n), ", "))

CROSSREFS

Cf. A319147, A318634.

Sequence in context: A210655 A052857 A053492 * A268420 A208402 A098343

Adjacent sequences:  A319831 A319832 A319833 * A319835 A319836 A319837

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 30 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 3 13:22 EDT 2022. Contains 357237 sequences. (Running on oeis4.)