login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319836
O.g.f. A(x) satisfies: [x^n] 1/(1-x)^(n^3) / exp( n^2*A(x) ) = 0 for n >= 1.
3
1, 3, 82, 8809, 1968876, 737476237, 413835914885, 324291453995297, 338056326570381922, 452343107609773394401, 755809472347044012276336, 1542728249552891936516983561, 3778352523083207335101484460943, 10938158784764591996291933439895707, 36956866034584035700151967827780276701, 144148838902339708999595419616325771715713
OFFSET
1,2
COMMENTS
It is remarkable that this sequence should consist entirely of integers.
LINKS
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 82*x^3 + 8809*x^4 + 1968876*x^5 + 737476237*x^6 + 413835914885*x^7 + 324291453995297*x^8 + ...
The table of coefficients of x^k/k! in 1/(1-x)^(n^3)/exp(n^2*A(x)) begins
n=1: [1, 0, -5, -490, -211335, -236240596, -530964635645, ...];
n=2: [1, 4, 0, -2080, -877360, -961966464, -2146569842816, ...];
n=3: [1, 18, 297, 0, -2162835, -2310096834, -5017161130227, ...];
n=4: [1, 48, 2272, 98240, 0, -4547777536, -9705730181888, ...];
n=5: [1, 100, 9975, 980450, 88397225, 0, -16884222466625, ...];
n=6: [1, 180, 32400, 5814720, 1029708720, 168003828864, 0, ...]; ...
in which the coefficient of x^n in the n-th row forms a diagonal of zeros.
RELATED SERIES.
exp(A(x)) = 1 + x + 7*x^2/2! + 511*x^3/3! + 213529*x^4/4! + 237357241*x^5/5! + 532425292591*x^6/6! + 2089488422870647*x^7/7! + ...
PROG
(PARI) {a(n) = my(A=[1], m); for(i=1, n+1, A=concat(A, 0); m=#A; A[m] = Vec( 1/(1-x +x^2*O(x^m))^(m^3) * exp(-m^2*x*Ser(A)) )[m+1]/m^2 ); polcoeff( x*Ser(A), n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Paul D. Hanna, Sep 30 2018
STATUS
approved