OFFSET
1,3
COMMENTS
It is remarkable that this sequence should consist entirely of integers.
EXAMPLE
G.f.: A(x) = x + x^2 + 64*x^3 + 7431*x^4 + 1715876*x^5 + 655110323*x^6 + 372565312967*x^7 + 294961986584223*x^8 + ...
The table of coefficients of x^k/k! in (1+x)^(n^3)/exp(n^2*A(x)) begins
n=1: [1, 0, -3, -382, -178323, -205893636, -471669948095, ...];
n=2: [1, 4, 0, -1648, -738256, -837882624, -1906457557376, ...];
n=3: [1, 18, 279, 0, -1826631, -2007298314, -4452097032657, ...];
n=4: [1, 48, 2208, 90752, 0, -3956975616, -8595954537728, ...];
n=5: [1, 100, 9825, 938150, 81392525, 0, -14962864950875, ...];
n=6: [1, 180, 32112, 5663088, 977957712, 154892058624, 0, ...];
n=7: [1, 294, 85995, 25005092, 7212994089, 2046788086266, 535857247292899, 0, ...]; ...
in which the coefficient of x^n in the n-th row forms a diagonal of zeros.
RELATED SERIES.
exp(A(x)) = 1 + x + 3*x^2/2! + 391*x^3/3! + 179905*x^4/4! + 206808441*x^5/5! + 472924417411*x^6/6! + 1881046356701023*x^7/7! + ...
PROG
(PARI) {a(n) = my(A=[1], m); for(i=1, n+1, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x^2*O(x^m))^(m^3) * exp(-m^2*x*Ser(A)) )[m+1]/m^2 ); polcoeff( x*Ser(A), n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 28 2018
STATUS
approved