login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319832
O.g.f. A(x) satisfies: [x^n] (1+x)^(n^3) / exp( n^2*A(x) ) = 0 for n >= 1.
4
1, 1, 64, 7431, 1715876, 655110323, 372565312967, 294961986584223, 310044461434740982, 417747271801946191399, 702143923935041675022156, 1440542259736400467662865991, 3543917937671552230039341072619, 10300091517989144989707891748204281, 34923380149186824044791021305086297101, 136645283241569758193338091605962393536127
OFFSET
1,3
COMMENTS
It is remarkable that this sequence should consist entirely of integers.
EXAMPLE
G.f.: A(x) = x + x^2 + 64*x^3 + 7431*x^4 + 1715876*x^5 + 655110323*x^6 + 372565312967*x^7 + 294961986584223*x^8 + ...
The table of coefficients of x^k/k! in (1+x)^(n^3)/exp(n^2*A(x)) begins
n=1: [1, 0, -3, -382, -178323, -205893636, -471669948095, ...];
n=2: [1, 4, 0, -1648, -738256, -837882624, -1906457557376, ...];
n=3: [1, 18, 279, 0, -1826631, -2007298314, -4452097032657, ...];
n=4: [1, 48, 2208, 90752, 0, -3956975616, -8595954537728, ...];
n=5: [1, 100, 9825, 938150, 81392525, 0, -14962864950875, ...];
n=6: [1, 180, 32112, 5663088, 977957712, 154892058624, 0, ...];
n=7: [1, 294, 85995, 25005092, 7212994089, 2046788086266, 535857247292899, 0, ...]; ...
in which the coefficient of x^n in the n-th row forms a diagonal of zeros.
RELATED SERIES.
exp(A(x)) = 1 + x + 3*x^2/2! + 391*x^3/3! + 179905*x^4/4! + 206808441*x^5/5! + 472924417411*x^6/6! + 1881046356701023*x^7/7! + ...
PROG
(PARI) {a(n) = my(A=[1], m); for(i=1, n+1, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x^2*O(x^m))^(m^3) * exp(-m^2*x*Ser(A)) )[m+1]/m^2 ); polcoeff( x*Ser(A), n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A180377 A013995 A264007 * A063410 A075417 A294083
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 28 2018
STATUS
approved