login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

O.g.f. A(x) satisfies: [x^n] (1+x)^(n^3) / exp( n^2*A(x) ) = 0 for n >= 1.
4

%I #7 Sep 30 2018 19:44:46

%S 1,1,64,7431,1715876,655110323,372565312967,294961986584223,

%T 310044461434740982,417747271801946191399,702143923935041675022156,

%U 1440542259736400467662865991,3543917937671552230039341072619,10300091517989144989707891748204281,34923380149186824044791021305086297101,136645283241569758193338091605962393536127

%N O.g.f. A(x) satisfies: [x^n] (1+x)^(n^3) / exp( n^2*A(x) ) = 0 for n >= 1.

%C It is remarkable that this sequence should consist entirely of integers.

%e G.f.: A(x) = x + x^2 + 64*x^3 + 7431*x^4 + 1715876*x^5 + 655110323*x^6 + 372565312967*x^7 + 294961986584223*x^8 + ...

%e The table of coefficients of x^k/k! in (1+x)^(n^3)/exp(n^2*A(x)) begins

%e n=1: [1, 0, -3, -382, -178323, -205893636, -471669948095, ...];

%e n=2: [1, 4, 0, -1648, -738256, -837882624, -1906457557376, ...];

%e n=3: [1, 18, 279, 0, -1826631, -2007298314, -4452097032657, ...];

%e n=4: [1, 48, 2208, 90752, 0, -3956975616, -8595954537728, ...];

%e n=5: [1, 100, 9825, 938150, 81392525, 0, -14962864950875, ...];

%e n=6: [1, 180, 32112, 5663088, 977957712, 154892058624, 0, ...];

%e n=7: [1, 294, 85995, 25005092, 7212994089, 2046788086266, 535857247292899, 0, ...]; ...

%e in which the coefficient of x^n in the n-th row forms a diagonal of zeros.

%e RELATED SERIES.

%e exp(A(x)) = 1 + x + 3*x^2/2! + 391*x^3/3! + 179905*x^4/4! + 206808441*x^5/5! + 472924417411*x^6/6! + 1881046356701023*x^7/7! + ...

%o (PARI) {a(n) = my(A=[1], m); for(i=1, n+1, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x^2*O(x^m))^(m^3) * exp(-m^2*x*Ser(A)) )[m+1]/m^2 ); polcoeff( x*Ser(A), n)}

%o for(n=1, 20, print1(a(n), ", "))

%Y Cf. A319831, A319833.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Sep 28 2018