login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319831 O.g.f. A(x) satisfies: [x^n] (1+x)^(n^3) / exp( n*A(x) ) = 0 for n >= 1. 3
1, 7, 495, 79066, 23024860, 10572117273, 7013015135896, 6339726763590496, 7490028944758474548, 11205332666103104972870, 20707904898272234027832128, 46337521327783545461807594898, 123493236514176445337375562127273, 386578735289710248386597916624905008, 1404667043036383301054968922912928274395, 5864184572831214357534720189729386105896368 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

It is remarkable that this sequence should consist entirely of integers.

LINKS

Table of n, a(n) for n=1..16.

EXAMPLE

G.f.: A(x) = x + 7*x^2 + 495*x^3 + 79066*x^4 + 23024860*x^5 + 10572117273*x^6 + 7013015135896*x^7 + 6339726763590496*x^8 + ...

The table of coefficients of x^k/k! in (1+x)^(n^3)/exp(n*A(x)) begins

n=1: [1, 0, -15, -2968, -1896915, -2762537976, -7611409439315, ...];

n=2: [1, 6, 0, -6356, -3939984, -5639776032, -15422380789952, ...];

n=3: [1, 24, 507, 0, -6435495, -9016860528, -24073494668037, ...];

n=4: [1, 60, 3480, 182648, 0, -13206756864, -34841304393920, ...];

n=5: [1, 120, 14205, 1643200, 174129405, 0, -48106118941175, ...];

n=6: [1, 210, 43800, 9054612, 1839707280, 344760621984, 0, ...];

n=7: [1, 336, 112455, 37468424, 12407062521, 4051917824808, 1225838213682103, 0, ...]; ...

in which the coefficient of x^n in the n-th row forms a diagonal of zeros.

RELATED SERIES.

exp(A(x)) = 1 + x + 15*x^2/2! + 3013*x^3/3! + 1910137*x^4/4! + 2772919701*x^5/5! + 7629020105551*x^6/6! + 35399950893130825*x^7/7! + ...

PROG

(PARI) {a(n) = my(A=[1], m); for(i=1, n+1, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x^2*O(x^m))^(m^3) * exp(-m*x*Ser(A)) )[m+1]/m ); polcoeff( x*Ser(A), n)}

for(n=1, 20, print1(a(n), ", "))

CROSSREFS

Cf. A319832, A319833.

Sequence in context: A120773 A116167 A296175 * A122523 A293180 A203472

Adjacent sequences: A319828 A319829 A319830 * A319832 A319833 A319834

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 28 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 12:29 EST 2022. Contains 358427 sequences. (Running on oeis4.)