login
A203472
a(n) = Product_{3 <= i < j <= n+2} (i + j).
4
1, 7, 504, 498960, 8562153600, 3085457671296000, 27493649380770693120000, 6982164025191299372050022400000, 57286678477842677171688269225656320000000, 16987900892972660430046341200043192304533504000000000, 201504981205067832055356568153709798734509139298353152000000000000
OFFSET
1,2
COMMENTS
Each term divides its successor, as in A203470. It is conjectured that each term is divisible by the corresponding superfactorial, A000178(n), as in A203474.
LINKS
FORMULA
a(n) ~ 3*sqrt(A) * 2^(n^2 + 9*n/2 + 185/24) * n^(n^2/2 - n/2 - 179/24) / (Pi^(3/2) * exp(3*n^2/4 - n/2 + 1/24)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 09 2021
From G. C. Greubel, Aug 26 2023: (Start)
a(n) = Prod_{j=3..n+2} Prod_{i=3..j-1} (i + j).
a(n) = Prod_{j=3..n+2} Gamma(2*j)/Gamma(j+3).
a(n) = (18*2^(n+2)^2/Pi^(n/2))*BarnesG(n+3)*BarnesG(n+7/2)/(BarnesG(n+ 6)*BarnesG(7/2)). (End)
MAPLE
a:= n-> mul(mul(i+j, i=3..j-1), j=4..n+2):
seq(a(n), n=1..12); # Alois P. Heinz, Jul 23 2017
MATHEMATICA
(* First program *)
f[j_]:= j + 2; z = 16;
v[n_]:= Product[Product[f[k] + f[j], {j, k-1}], {k, 2, n}]
d[n_]:= Product[(i-1)!, {i, n}] (* A000178 *)
Table[v[n], {n, z}] (* A203472 *)
Table[v[n+1]/v[n], {n, z-1}] (* A203473 *)
Table[v[n]/d[n], {n, 20}] (* A203474 *)
(* Second program *)
Table[(18*2^(n+2)^2/Pi^(n/2))*BarnesG[n+3]*BarnesG[n+7/2]/(BarnesG[n+ 6]*BarnesG[7/2]), {n, 20}] (* G. C. Greubel, Aug 26 2023 *)
PROG
(Magma) [(&*[(&*[i+j: i in [3..j]])/(2*j): j in [3..n+2]]): n in [1..20]]; // G. C. Greubel, Aug 26 2023
(SageMath) [product( gamma(2*j)/gamma(j+3) for j in range(3, n+3) ) for n in range(1, 20)] # G. C. Greubel, Aug 26 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 02 2012
EXTENSIONS
Name edited by Alois P. Heinz, Jul 23 2017
STATUS
approved