OFFSET
1,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..250
FORMULA
a(n) ~ 2^(2*n + 11/2) * n^n / exp(n). - Vaclav Kotesovec, Apr 09 2021
a(n) = RisingFactorial(6 + n, n). - Peter Luschny, Mar 22 2022
Since v(n) = (135/4)*(2^(n+2)^2/Pi^(n/2))*(BarnesG(n+3)*BarnesG(n+7/2) )/( BarnesG(9/2)*BarnesG(n+6) ) then v(n+1)/v(n) = Gamma(2*n+6) / Gamma(n+6). - G. C. Greubel, Aug 27 2023
MATHEMATICA
(* First program *)
f[j_]:= j+2; z=16;
v[n_]:= Product[Product[f[k] + f[j], {j, k-1}], {k, 2, n}];
d[n_]:= Product[(i-1)!, {i, n}] (* A000178 *)
Table[v[n], {n, z}] (* A203472 *)
Table[v[n+1]/v[n], {n, z-1}] (* this sequence *)
Table[v[n]/d[n], {n, 20}] (* A203474 *)
(* Second program *)
Table[Pochhammer[n+6, n], {n, 20}] (* G. C. Greubel, Aug 27 2023 *)
PROG
(Magma) [Floor(Gamma(2*n+6)/Gamma(n+6)): n in [1..16]]; // G. C. Greubel, Aug 27 2023
(SageMath) [rising_factorial(n+6, n) for n in range(1, 16)] # G. C. Greubel, Aug 27 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 02 2012
STATUS
approved