login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203473
a(n) = v(n+1)/v(n), where v=A203472.
4
7, 72, 990, 17160, 360360, 8910720, 253955520, 8204716800, 296541907200, 11861676288000, 520431047136000, 24858235898496000, 1284342188088960000, 71382386874839040000, 4247252019052922880000
OFFSET
1,1
LINKS
FORMULA
a(n) ~ 2^(2*n + 11/2) * n^n / exp(n). - Vaclav Kotesovec, Apr 09 2021
a(n) = RisingFactorial(6 + n, n). - Peter Luschny, Mar 22 2022
Since v(n) = (135/4)*(2^(n+2)^2/Pi^(n/2))*(BarnesG(n+3)*BarnesG(n+7/2) )/( BarnesG(9/2)*BarnesG(n+6) ) then v(n+1)/v(n) = Gamma(2*n+6) / Gamma(n+6). - G. C. Greubel, Aug 27 2023
MATHEMATICA
(* First program *)
f[j_]:= j+2; z=16;
v[n_]:= Product[Product[f[k] + f[j], {j, k-1}], {k, 2, n}];
d[n_]:= Product[(i-1)!, {i, n}] (* A000178 *)
Table[v[n], {n, z}] (* A203472 *)
Table[v[n+1]/v[n], {n, z-1}] (* this sequence *)
Table[v[n]/d[n], {n, 20}] (* A203474 *)
(* Second program *)
Table[Pochhammer[n+6, n], {n, 20}] (* G. C. Greubel, Aug 27 2023 *)
PROG
(Magma) [Floor(Gamma(2*n+6)/Gamma(n+6)): n in [1..16]]; // G. C. Greubel, Aug 27 2023
(SageMath) [rising_factorial(n+6, n) for n in range(1, 16)] # G. C. Greubel, Aug 27 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 02 2012
STATUS
approved