login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203470
a(n) = Product_{2 <= i < j <= n+1} (i + j).
5
1, 5, 210, 105840, 838252800, 129459762432000, 466521199899955200000, 45727437650097816797184000000, 139352822480378029387123167068160000000, 14863555768518278744824500982673408262144000000000, 61707340455179609358720715109663452970925870494515200000000000
OFFSET
1,2
COMMENTS
Each term divides its successor, as (conjectured) in A102693. Each term is divisible by the corresponding superfactorial, A000178(n), as in A203471.
LINKS
FORMULA
a(n) ~ sqrt(A) * 2^(n^2 + 5*n/2 + 41/24) * exp(-3*n^2/4 + n/2 - 1/24) * n^(n^2/2 - n/2 - 71/24) / Pi, where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2021
From G. C. Greubel, Aug 29 2023: (Start)
a(n) = Product_{j=2..n+1} Gamma(2*j)/Gamma(j+2).
a(n) = (2/sqrt(Pi))*( 2^(n+1)^2 * BarnesG(n+5/2)/(Pi^(n/2)*Gamma(n+2)*Gamma(n+3)*BarnesG(3/2)) ).
a(n) = (BarnesG(n+2)/2^n) * Product_{j=2..n+1} Catalan(j). (End)
MAPLE
a:= n-> mul(mul(i+j, i=2..j-1), j=3..n+1):
seq(a(n), n=1..12); # Alois P. Heinz, Jul 23 2017
MATHEMATICA
(* First program *)
f[j_]:= j+1; z = 16;
v[n_]:= Product[Product[f[k] + f[j], {j, k-1}], {k, 2, n}]
d[n_]:= Product[(i-1)!, {i, n}]
Table[v[n], {n, z}] (* A203470 *)
Table[v[n+1]/v[n], {n, z-1}] (* A102693 *)
Table[v[n]/d[n], {n, 20}] (* A203471 *)
(* Second program *)
Table[Product[Gamma[2*j]/Gamma[j+2], {j, 2, n+1}], {n, 20}] (* G. C. Greubel, Aug 29 2023 *)
PROG
(Magma) [(&*[Factorial(2*k-1)/Factorial(k+1): k in [2..n+1]]): n in [1..20]]; // G. C. Greubel, Aug 29 2023
(SageMath) [product(gamma(2*k)/gamma(k+2) for k in range(2, n+2)) for n in range(1, 20)] # G. C. Greubel, Aug 29 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 02 2012
EXTENSIONS
Name edited by Alois P. Heinz, Jul 23 2017
STATUS
approved