The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203467 a(n) = A203309(n)/A000178(n) where A000178 are superfactorials. 2
 1, 1, 2, 15, 630, 198450, 589396500, 19912024006875, 8969371213896843750, 61815874928487448987968750, 7358663747680777931818630148437500, 16862758880642741957030086746987589746093750 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..39 R. Chapman, A polynomial taking integer values, Mathematics Magazine, 29 (1996), 121. FORMULA From G. C. Greubel, Aug 29 2023: (Start) a(n) = (2^(n+3)/Pi)^(n/2)*BarnesG(n+3/2)/(Gamma(n+ 2)*BarnesG(3/2)). a(n) = (1/2)^binomial(n,2)*BarnesG(n+1)*Product_{k=2..n} binomial(2*k, k+1). a(n) = Product_{k=1..n-1} (2*k+2)!/(2^k*(k+2)!). (End) a(n) ~ sqrt(A/Pi) * 2^(n^2/2 + 2*n - 7/24) * n^(n^2/2 - n/2 - 35/24) / exp(3*n^2/4 - n/2 + 1/24), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 19 2023 MATHEMATICA (* First program *) f[j_]:= j*(j+1)/2; z = 15; v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}] d[n_]:= Product[(i-1)!, {i, n}] Table[v[n], {n, 0, z}] (* A203309 *) Table[v[n+1]/v[n], {n, z}] (* A203310 *) Table[v[n]/d[n], {n, 0, 12}] (* A203467 *) (* Second program *) Table[Product[(2*k+2)!/(2^k*(k+2)!), {k, n-1}], {n, 0, 20}] (* G. C. Greubel, Aug 29 2023 *) PROG (Magma) F:= Factorial; [1] cat [(&*[(F(2*k+2))/(2^k*F(k+2)): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 29 2023 (SageMath) f=factorial; [product((f(2*j+2))/(2^j*f(j+2)) for j in range(n)) for n in range(21)] # G. C. Greubel, Aug 29 2023 CROSSREFS Cf. A000178, A203309, A203310. Sequence in context: A361210 A078475 A015185 * A071627 A013064 A013095 Adjacent sequences: A203464 A203465 A203466 * A203468 A203469 A203470 KEYWORD nonn AUTHOR Clark Kimberling, Jan 02 2012 EXTENSIONS Name edited by Michel Marcus, May 17 2019 a(0) = 1 prepended by G. C. Greubel, Aug 29 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 17:49 EDT 2024. Contains 374553 sequences. (Running on oeis4.)